Tim J L Smeets, Hilde R H de Geus, Abraham J Valkenburg, Lauren Baidjoe, Diederik A M P J Gommers, Birgit C P Koch, Nicole G M Hunfeld, Henrik Endeman
{"title":"新冠肺炎危重患者持续肾替代治疗期间咪唑安定和代谢产物的清除。","authors":"Tim J L Smeets, Hilde R H de Geus, Abraham J Valkenburg, Lauren Baidjoe, Diederik A M P J Gommers, Birgit C P Koch, Nicole G M Hunfeld, Henrik Endeman","doi":"10.1159/000534538","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Midazolam-based continuous intravenous sedation in patients admitted to the intensive care unit (ICU) was a necessity during the COVID-19 pandemic. However, benzodiazepine-based sedation is associated with a high incidence of benzodiazepine-related delirium and additional days on mechanical ventilation. Due to the requirement of high midazolam doses in combination with the impaired renal clearance (CL) of the pharmacological active metabolite 1-OH-midazolam-glucuronide (10% compared to midazolam), ICU patients with COVID-19 and continuous renal replacement therapy (CRRT) were at risk of unintended prolonged sedation. Several CRRT-related factors may have influenced the delivered CL of midazolam and its metabolites. Therefore, the aim of the study was to identify and describe these CRRT-related factors.</p><p><strong>Methods: </strong>Pre-filter blood samples and ultrafiltrate samples were collected simultaneously. Midazolam, 1-OH-midazolam, and 1-OH-midazolam-glucuronide plasma samples were analyzed using an UPLC-MS/MS method. The prescribed CRRT dose was corrected for downtime and filter integrity using the urea ratio (urea concentration in effluent/urea concentration plasma). CL of midazolam and its metabolites were calculated with the delivered CRRT dose (corrected for downtime and saturation coefficient [SD]).</p><p><strong>Results: </strong>Three patients on continuous venovenous hemodialysis (CVVHD) and 2 patients on continuous venovenous hemodiafiltration (CVVHDF) were included. Midazolam, 1-OH-midazolam, and 1-OH-midazolam-glucuronide concentrations were 2,849 (0-6,700) μg/L, 153 (0-295) μg/L, and 27,297 (1,727-39,000) μg/L, respectively. The SD was 0.03 (0.02-0.03) for midazolam, 0.05 (0.05-0.06) for 1-OH-midazolam, and 0.33 (0.23-0.43) for 1-OH-midazolam-glucuronide. The delivered CRRT CL was 1.4 (0-1.7) mL/min for midazolam, 2.7 (0-3.5) mL/min for 1-OH-midazolam, and 15.7 (4.0-27.7) mL/min for 1-OH-midazolam-glucuronide.</p><p><strong>Conclusions: </strong>Midazolam and 1-OH-midazolam were not removed during CVVHD and CVVHDF. However, 1-OH-midazolam-glucuronide was removed reasonably, approximately up to 43%. CRRT modality, filter integrity, and downtime affect this removal. These data imply a personalized titration of midazolam in critically ill patients with renal failure and awareness for the additional sedative effects of its active metabolites.</p>","PeriodicalId":8953,"journal":{"name":"Blood Purification","volume":" ","pages":"107-113"},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836747/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Clearance of Midazolam and Metabolites during Continuous Renal Replacement Therapy in Critically Ill Patients with COVID-19.\",\"authors\":\"Tim J L Smeets, Hilde R H de Geus, Abraham J Valkenburg, Lauren Baidjoe, Diederik A M P J Gommers, Birgit C P Koch, Nicole G M Hunfeld, Henrik Endeman\",\"doi\":\"10.1159/000534538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Midazolam-based continuous intravenous sedation in patients admitted to the intensive care unit (ICU) was a necessity during the COVID-19 pandemic. However, benzodiazepine-based sedation is associated with a high incidence of benzodiazepine-related delirium and additional days on mechanical ventilation. Due to the requirement of high midazolam doses in combination with the impaired renal clearance (CL) of the pharmacological active metabolite 1-OH-midazolam-glucuronide (10% compared to midazolam), ICU patients with COVID-19 and continuous renal replacement therapy (CRRT) were at risk of unintended prolonged sedation. Several CRRT-related factors may have influenced the delivered CL of midazolam and its metabolites. Therefore, the aim of the study was to identify and describe these CRRT-related factors.</p><p><strong>Methods: </strong>Pre-filter blood samples and ultrafiltrate samples were collected simultaneously. Midazolam, 1-OH-midazolam, and 1-OH-midazolam-glucuronide plasma samples were analyzed using an UPLC-MS/MS method. The prescribed CRRT dose was corrected for downtime and filter integrity using the urea ratio (urea concentration in effluent/urea concentration plasma). CL of midazolam and its metabolites were calculated with the delivered CRRT dose (corrected for downtime and saturation coefficient [SD]).</p><p><strong>Results: </strong>Three patients on continuous venovenous hemodialysis (CVVHD) and 2 patients on continuous venovenous hemodiafiltration (CVVHDF) were included. Midazolam, 1-OH-midazolam, and 1-OH-midazolam-glucuronide concentrations were 2,849 (0-6,700) μg/L, 153 (0-295) μg/L, and 27,297 (1,727-39,000) μg/L, respectively. The SD was 0.03 (0.02-0.03) for midazolam, 0.05 (0.05-0.06) for 1-OH-midazolam, and 0.33 (0.23-0.43) for 1-OH-midazolam-glucuronide. The delivered CRRT CL was 1.4 (0-1.7) mL/min for midazolam, 2.7 (0-3.5) mL/min for 1-OH-midazolam, and 15.7 (4.0-27.7) mL/min for 1-OH-midazolam-glucuronide.</p><p><strong>Conclusions: </strong>Midazolam and 1-OH-midazolam were not removed during CVVHD and CVVHDF. However, 1-OH-midazolam-glucuronide was removed reasonably, approximately up to 43%. CRRT modality, filter integrity, and downtime affect this removal. These data imply a personalized titration of midazolam in critically ill patients with renal failure and awareness for the additional sedative effects of its active metabolites.</p>\",\"PeriodicalId\":8953,\"journal\":{\"name\":\"Blood Purification\",\"volume\":\" \",\"pages\":\"107-113\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10836747/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Purification\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000534538\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Purification","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000534538","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
The Clearance of Midazolam and Metabolites during Continuous Renal Replacement Therapy in Critically Ill Patients with COVID-19.
Introduction: Midazolam-based continuous intravenous sedation in patients admitted to the intensive care unit (ICU) was a necessity during the COVID-19 pandemic. However, benzodiazepine-based sedation is associated with a high incidence of benzodiazepine-related delirium and additional days on mechanical ventilation. Due to the requirement of high midazolam doses in combination with the impaired renal clearance (CL) of the pharmacological active metabolite 1-OH-midazolam-glucuronide (10% compared to midazolam), ICU patients with COVID-19 and continuous renal replacement therapy (CRRT) were at risk of unintended prolonged sedation. Several CRRT-related factors may have influenced the delivered CL of midazolam and its metabolites. Therefore, the aim of the study was to identify and describe these CRRT-related factors.
Methods: Pre-filter blood samples and ultrafiltrate samples were collected simultaneously. Midazolam, 1-OH-midazolam, and 1-OH-midazolam-glucuronide plasma samples were analyzed using an UPLC-MS/MS method. The prescribed CRRT dose was corrected for downtime and filter integrity using the urea ratio (urea concentration in effluent/urea concentration plasma). CL of midazolam and its metabolites were calculated with the delivered CRRT dose (corrected for downtime and saturation coefficient [SD]).
Results: Three patients on continuous venovenous hemodialysis (CVVHD) and 2 patients on continuous venovenous hemodiafiltration (CVVHDF) were included. Midazolam, 1-OH-midazolam, and 1-OH-midazolam-glucuronide concentrations were 2,849 (0-6,700) μg/L, 153 (0-295) μg/L, and 27,297 (1,727-39,000) μg/L, respectively. The SD was 0.03 (0.02-0.03) for midazolam, 0.05 (0.05-0.06) for 1-OH-midazolam, and 0.33 (0.23-0.43) for 1-OH-midazolam-glucuronide. The delivered CRRT CL was 1.4 (0-1.7) mL/min for midazolam, 2.7 (0-3.5) mL/min for 1-OH-midazolam, and 15.7 (4.0-27.7) mL/min for 1-OH-midazolam-glucuronide.
Conclusions: Midazolam and 1-OH-midazolam were not removed during CVVHD and CVVHDF. However, 1-OH-midazolam-glucuronide was removed reasonably, approximately up to 43%. CRRT modality, filter integrity, and downtime affect this removal. These data imply a personalized titration of midazolam in critically ill patients with renal failure and awareness for the additional sedative effects of its active metabolites.
期刊介绍:
Practical information on hemodialysis, hemofiltration, peritoneal dialysis and apheresis is featured in this journal. Recognizing the critical importance of equipment and procedures, particular emphasis has been placed on reports, drawn from a wide range of fields, describing technical advances and improvements in methodology. Papers reflect the search for cost-effective solutions which increase not only patient survival but also patient comfort and disease improvement through prevention or correction of undesirable effects. Advances in vascular access and blood anticoagulation, problems associated with exposure of blood to foreign surfaces and acute-care nephrology, including continuous therapies, also receive attention. Nephrologists, internists, intensivists and hospital staff involved in dialysis, apheresis and immunoadsorption for acute and chronic solid organ failure will find this journal useful and informative. ''Blood Purification'' also serves as a platform for multidisciplinary experiences involving nephrologists, cardiologists and critical care physicians in order to expand the level of interaction between different disciplines and specialities.