糖酵解代谢途径在心血管疾病中的作用和潜在的治疗方法。

IF 7.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Shuxian Chen, Yuanming Zou, Chunyu Song, Kexin Cao, Kexin Cai, Yanjiao Wu, Zhaobo Zhang, Danxi Geng, Wei Sun, Nanxiang Ouyang, Naijin Zhang, Zhao Li, Guozhe Sun, Yixiao Zhang, Yingxian Sun, Ying Zhang
{"title":"糖酵解代谢途径在心血管疾病中的作用和潜在的治疗方法。","authors":"Shuxian Chen, Yuanming Zou, Chunyu Song, Kexin Cao, Kexin Cai, Yanjiao Wu, Zhaobo Zhang, Danxi Geng, Wei Sun, Nanxiang Ouyang, Naijin Zhang, Zhao Li, Guozhe Sun, Yixiao Zhang, Yingxian Sun, Ying Zhang","doi":"10.1007/s00395-023-01018-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"48"},"PeriodicalIF":7.5000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632287/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches.\",\"authors\":\"Shuxian Chen, Yuanming Zou, Chunyu Song, Kexin Cao, Kexin Cai, Yanjiao Wu, Zhaobo Zhang, Danxi Geng, Wei Sun, Nanxiang Ouyang, Naijin Zhang, Zhao Li, Guozhe Sun, Yixiao Zhang, Yingxian Sun, Ying Zhang\",\"doi\":\"10.1007/s00395-023-01018-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.</p>\",\"PeriodicalId\":8723,\"journal\":{\"name\":\"Basic Research in Cardiology\",\"volume\":\"118 1\",\"pages\":\"48\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632287/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Research in Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00395-023-01018-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-023-01018-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病(CVD)是对人类健康的主要威胁,占非传染性疾病死亡人数的46%。糖酵解是一个保守而严格的生物过程,它将葡萄糖分解为丙酮酸盐,其主要功能是为身体提供生命活动所需的能量和中间产物。长期以来,人们发现与糖酵解途径相关的酶的非糖酵解作用与心血管疾病的发展有关,典型的例子是心力衰竭的代谢重塑,心力衰竭是一种心脏对缺氧和缺氧条件表现出快速适应反应的情况,发生在心力衰竭的早期。其主要特征是氧化磷酸化减少和糖酵解途径增加,糖酵解增加被认为是代谢重塑的标志。除此之外,糖酵解代谢途径是心肌细胞在缺血再灌注过程中的主要能量来源。不仅如此,糖酵解的辅助途径,如多元醇途径、己糖胺途径和磷酸戊糖途径,也与CVD密切相关。因此,靶向糖酵解对CVD的治疗干预非常有吸引力。然而,糖酵解途径与心血管疾病之间的关系非常复杂,一些临床前研究已经证实,靶向糖酵解确实具有一定的疗效,但其在心血管疾病发展中的具体作用尚待探索。本文旨在总结糖酵解途径及其关键酶(包括己糖激酶(HK)、磷酸葡萄糖异构酶(PGI)、磷酸果糖激酶-1(PFK1)、醛缩酶(醛缩酶)、磷酸甘油酸元酶(PGAM),烯醇化酶(ENO)丙酮酸激酶(PKM)乳酸脱氢酶(LDH))在心血管疾病(例如心力衰竭、心肌梗死、动脉粥样硬化)中的作用以及可能出现的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches.

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basic Research in Cardiology
Basic Research in Cardiology 医学-心血管系统
CiteScore
16.30
自引率
5.30%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards. Basic Research in Cardiology regularly receives articles from the fields of - Molecular and Cellular Biology - Biochemistry - Biophysics - Pharmacology - Physiology and Pathology - Clinical Cardiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信