{"title":"特发性肺纤维化和胃食管反流病遗传效应的预测和分析。","authors":"Peipei Chen, Lubin Xie, Leikai Ma, Xianda Zhao, Yong Chen, Zhouling Ge","doi":"10.1049/syb2.12081","DOIUrl":null,"url":null,"abstract":"<p>With increasing research on idiopathic pulmonary fibrosis (IPF) and gastroesophageal reflux disease (GERD), more and more studies have indicated that GERD is associated with IPF, but the underlying pathological mechanisms remain unclear. The aim of the present study is to identify and analyse the differentially expressed genes (DEGs) between IPF and GERD and explore the relevant molecular mechanisms via bioinformatics analysis. Four GEO datasets (GSE24206, GSE53845, GSE26886, and GSE39491) were downloaded from the GEO database, and DEGs between IPF and GERD were identified with the online tool GEO2R. Subsequently, a series of bioinformatics analyses are conducted, including Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses, the PPI network, biological characteristics, TF-gene interactions, TF-miRNA coregulatory networks, and the prediction of drug molecules. Totally, 71 genes were identified as DEGs in IPF and GERD. Five KEGG pathways, including Amoebiasis, Protein digestion and absorption, Relaxin signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Drug metabolism - cytochrome P450, were significantly enriched. In addition, eight hub genes, including <i>POSTN</i>, <i>MMP1</i>, <i>COL3A1</i>, <i>COL1A2</i>, <i>CXCL12</i>, <i>TIMP3</i>, <i>VCAM1</i>, and <i>COL1A1</i> were selected from the PPI network by Cytoscape software. Then, five hub genes (<i>MMP1</i>, <i>POSTN</i>, <i>COL3A1</i>, <i>COL1A2</i>, and <i>COL1A1</i>) with high diagnostic values for IPF and GERD were validated by GEO datasets. Finally, TF-gene and miRNA interaction was identified with hub genes and predicted drug molecules for the IPF and GERD. And the results suggest that cetirizine, luteolin, and pempidine may have great potential therapeutic value in IPF and GERD. This study will provide novel strategies for the identification of potential biomarkers and valuable therapeutic targets for IPF and GERD.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"17 6","pages":"352-365"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12081","citationCount":"0","resultStr":"{\"title\":\"Prediction and analysis of genetic effect in idiopathic pulmonary fibrosis and gastroesophageal reflux disease\",\"authors\":\"Peipei Chen, Lubin Xie, Leikai Ma, Xianda Zhao, Yong Chen, Zhouling Ge\",\"doi\":\"10.1049/syb2.12081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With increasing research on idiopathic pulmonary fibrosis (IPF) and gastroesophageal reflux disease (GERD), more and more studies have indicated that GERD is associated with IPF, but the underlying pathological mechanisms remain unclear. The aim of the present study is to identify and analyse the differentially expressed genes (DEGs) between IPF and GERD and explore the relevant molecular mechanisms via bioinformatics analysis. Four GEO datasets (GSE24206, GSE53845, GSE26886, and GSE39491) were downloaded from the GEO database, and DEGs between IPF and GERD were identified with the online tool GEO2R. Subsequently, a series of bioinformatics analyses are conducted, including Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses, the PPI network, biological characteristics, TF-gene interactions, TF-miRNA coregulatory networks, and the prediction of drug molecules. Totally, 71 genes were identified as DEGs in IPF and GERD. Five KEGG pathways, including Amoebiasis, Protein digestion and absorption, Relaxin signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Drug metabolism - cytochrome P450, were significantly enriched. In addition, eight hub genes, including <i>POSTN</i>, <i>MMP1</i>, <i>COL3A1</i>, <i>COL1A2</i>, <i>CXCL12</i>, <i>TIMP3</i>, <i>VCAM1</i>, and <i>COL1A1</i> were selected from the PPI network by Cytoscape software. Then, five hub genes (<i>MMP1</i>, <i>POSTN</i>, <i>COL3A1</i>, <i>COL1A2</i>, and <i>COL1A1</i>) with high diagnostic values for IPF and GERD were validated by GEO datasets. Finally, TF-gene and miRNA interaction was identified with hub genes and predicted drug molecules for the IPF and GERD. And the results suggest that cetirizine, luteolin, and pempidine may have great potential therapeutic value in IPF and GERD. This study will provide novel strategies for the identification of potential biomarkers and valuable therapeutic targets for IPF and GERD.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"17 6\",\"pages\":\"352-365\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12081\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12081","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Prediction and analysis of genetic effect in idiopathic pulmonary fibrosis and gastroesophageal reflux disease
With increasing research on idiopathic pulmonary fibrosis (IPF) and gastroesophageal reflux disease (GERD), more and more studies have indicated that GERD is associated with IPF, but the underlying pathological mechanisms remain unclear. The aim of the present study is to identify and analyse the differentially expressed genes (DEGs) between IPF and GERD and explore the relevant molecular mechanisms via bioinformatics analysis. Four GEO datasets (GSE24206, GSE53845, GSE26886, and GSE39491) were downloaded from the GEO database, and DEGs between IPF and GERD were identified with the online tool GEO2R. Subsequently, a series of bioinformatics analyses are conducted, including Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses, the PPI network, biological characteristics, TF-gene interactions, TF-miRNA coregulatory networks, and the prediction of drug molecules. Totally, 71 genes were identified as DEGs in IPF and GERD. Five KEGG pathways, including Amoebiasis, Protein digestion and absorption, Relaxin signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Drug metabolism - cytochrome P450, were significantly enriched. In addition, eight hub genes, including POSTN, MMP1, COL3A1, COL1A2, CXCL12, TIMP3, VCAM1, and COL1A1 were selected from the PPI network by Cytoscape software. Then, five hub genes (MMP1, POSTN, COL3A1, COL1A2, and COL1A1) with high diagnostic values for IPF and GERD were validated by GEO datasets. Finally, TF-gene and miRNA interaction was identified with hub genes and predicted drug molecules for the IPF and GERD. And the results suggest that cetirizine, luteolin, and pempidine may have great potential therapeutic value in IPF and GERD. This study will provide novel strategies for the identification of potential biomarkers and valuable therapeutic targets for IPF and GERD.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.