Yonghu Chen, Fangying Zhu, Xianhua Che, Yanwei Li, Ning Li, Zhe Jiang, Xuezheng Li
{"title":"尖叶白芷花通过NF-κB/NLRP3途径诱导A549细胞焦下垂,具有抗癌症作用。","authors":"Yonghu Chen, Fangying Zhu, Xianhua Che, Yanwei Li, Ning Li, Zhe Jiang, Xuezheng Li","doi":"10.1186/s13008-023-00102-w","DOIUrl":null,"url":null,"abstract":"<p><p>Angelica acutiloba Kitagawa, a traditional medicinal herb of the Umbelliferae family, has been demonstrated to have anticancer activity. In this study, we investigated the anti-lung cancer effects of two compounds extracted from A. acutiloba flowers: kaempferol-3-O-α-L-(4″-E-p-coumaroyl)-rhamnoside (KAE) and platanoside (PLA). MTT, cell colony formation, and cell migration (scratch) assays revealed that both KAE (100 μM) and PLA (50 μM and 100 μM) inhibited the viability, proliferation, and migration of A549 cells. Dichlorodihydrofluorescein diacetate assays showed that KAE and PLA also induced the generation of reactive oxygen species in A549 cells. Morphologically, A549 cells swelled and grew larger under treatment with KAE and PLA, with the most significant changes at 100 μM PLA. Fluorescence staining and measurement of lactate dehydrogenase release showed that the cells underwent pyroptosis with concomitant upregulation of interleukin (IL)-1β and IL-18. Furthermore, both KAE and PLA induced upregulation of NF-κB, PARP, NLRP3, ASC, cleaved-caspase-1, and GSDMD expression in A549 cells. Subsequent investigations unveiled that these compounds interact with NLRP3, augment NLRP3's binding affinity with ASC, and stimulate the assembly of the inflammasome, thereby inducing pyroptosis. In conclusion, KAE and PLA, two active components of A. acutiloba flower extract, had significant anti-lung cancer activities exerted through regulation of proteins related to the NLRP3 inflammasome pathway.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"18 1","pages":"19"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619230/pdf/","citationCount":"0","resultStr":"{\"title\":\"Angelica acutiloba Kitagawa flower induces A549 cell pyroptosis via the NF-κB/NLRP3 pathway for anti-lung cancer effects.\",\"authors\":\"Yonghu Chen, Fangying Zhu, Xianhua Che, Yanwei Li, Ning Li, Zhe Jiang, Xuezheng Li\",\"doi\":\"10.1186/s13008-023-00102-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Angelica acutiloba Kitagawa, a traditional medicinal herb of the Umbelliferae family, has been demonstrated to have anticancer activity. In this study, we investigated the anti-lung cancer effects of two compounds extracted from A. acutiloba flowers: kaempferol-3-O-α-L-(4″-E-p-coumaroyl)-rhamnoside (KAE) and platanoside (PLA). MTT, cell colony formation, and cell migration (scratch) assays revealed that both KAE (100 μM) and PLA (50 μM and 100 μM) inhibited the viability, proliferation, and migration of A549 cells. Dichlorodihydrofluorescein diacetate assays showed that KAE and PLA also induced the generation of reactive oxygen species in A549 cells. Morphologically, A549 cells swelled and grew larger under treatment with KAE and PLA, with the most significant changes at 100 μM PLA. Fluorescence staining and measurement of lactate dehydrogenase release showed that the cells underwent pyroptosis with concomitant upregulation of interleukin (IL)-1β and IL-18. Furthermore, both KAE and PLA induced upregulation of NF-κB, PARP, NLRP3, ASC, cleaved-caspase-1, and GSDMD expression in A549 cells. Subsequent investigations unveiled that these compounds interact with NLRP3, augment NLRP3's binding affinity with ASC, and stimulate the assembly of the inflammasome, thereby inducing pyroptosis. In conclusion, KAE and PLA, two active components of A. acutiloba flower extract, had significant anti-lung cancer activities exerted through regulation of proteins related to the NLRP3 inflammasome pathway.</p>\",\"PeriodicalId\":49263,\"journal\":{\"name\":\"Cell Division\",\"volume\":\"18 1\",\"pages\":\"19\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619230/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Division\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13008-023-00102-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Division","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13008-023-00102-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Angelica acutiloba Kitagawa flower induces A549 cell pyroptosis via the NF-κB/NLRP3 pathway for anti-lung cancer effects.
Angelica acutiloba Kitagawa, a traditional medicinal herb of the Umbelliferae family, has been demonstrated to have anticancer activity. In this study, we investigated the anti-lung cancer effects of two compounds extracted from A. acutiloba flowers: kaempferol-3-O-α-L-(4″-E-p-coumaroyl)-rhamnoside (KAE) and platanoside (PLA). MTT, cell colony formation, and cell migration (scratch) assays revealed that both KAE (100 μM) and PLA (50 μM and 100 μM) inhibited the viability, proliferation, and migration of A549 cells. Dichlorodihydrofluorescein diacetate assays showed that KAE and PLA also induced the generation of reactive oxygen species in A549 cells. Morphologically, A549 cells swelled and grew larger under treatment with KAE and PLA, with the most significant changes at 100 μM PLA. Fluorescence staining and measurement of lactate dehydrogenase release showed that the cells underwent pyroptosis with concomitant upregulation of interleukin (IL)-1β and IL-18. Furthermore, both KAE and PLA induced upregulation of NF-κB, PARP, NLRP3, ASC, cleaved-caspase-1, and GSDMD expression in A549 cells. Subsequent investigations unveiled that these compounds interact with NLRP3, augment NLRP3's binding affinity with ASC, and stimulate the assembly of the inflammasome, thereby inducing pyroptosis. In conclusion, KAE and PLA, two active components of A. acutiloba flower extract, had significant anti-lung cancer activities exerted through regulation of proteins related to the NLRP3 inflammasome pathway.
期刊介绍:
Cell Division is an open access, peer-reviewed journal that encompasses all the molecular aspects of cell cycle control and cancer, cell growth, proliferation, survival, differentiation, signalling, gene transcription, protein synthesis, genome integrity, chromosome stability, centrosome duplication, DNA damage and DNA repair.
Cell Division provides an online forum for the cell-cycle community that aims to publish articles on all exciting aspects of cell-cycle research and to bridge the gap between models of cell cycle regulation, development, and cancer biology. This forum is driven by specialized and timely research articles, reviews and commentaries focused on this fast moving field, providing an invaluable tool for cell-cycle biologists.
Cell Division publishes articles in areas which includes, but not limited to:
DNA replication, cell fate decisions, cell cycle & development
Cell proliferation, mitosis, spindle assembly checkpoint, ubiquitin mediated degradation
DNA damage & repair
Apoptosis & cell death