随机系数模型的中期分析中的条件功率和信息分数计算。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Pharmaceutical Statistics Pub Date : 2024-03-01 Epub Date: 2023-11-02 DOI:10.1002/pst.2345
Sandra A Lewis, Kevin J Carroll, Todd DeVries, Jonathan Barratt
{"title":"随机系数模型的中期分析中的条件功率和信息分数计算。","authors":"Sandra A Lewis, Kevin J Carroll, Todd DeVries, Jonathan Barratt","doi":"10.1002/pst.2345","DOIUrl":null,"url":null,"abstract":"<p><p>Random coefficient (RC) models are commonly used in clinical trials to estimate the rate of change over time in longitudinal data. Trials utilizing a surrogate endpoint for accelerated approval with a confirmatory longitudinal endpoint to show clinical benefit is a strategy implemented across various therapeutic areas, including immunoglobulin A nephropathy. Understanding conditional power (CP) and information fraction calculations of RC models may help in the design of clinical trials as well as provide support for the confirmatory endpoint at the time of accelerated approval. This paper provides calculation methods, with practical examples, for determining CP at an interim analysis for a RC model with longitudinal data, such as estimated glomerular filtration rate (eGFR) assessments to measure rate of change in eGFR slope.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional power and information fraction calculations at an interim analysis for random coefficient models.\",\"authors\":\"Sandra A Lewis, Kevin J Carroll, Todd DeVries, Jonathan Barratt\",\"doi\":\"10.1002/pst.2345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Random coefficient (RC) models are commonly used in clinical trials to estimate the rate of change over time in longitudinal data. Trials utilizing a surrogate endpoint for accelerated approval with a confirmatory longitudinal endpoint to show clinical benefit is a strategy implemented across various therapeutic areas, including immunoglobulin A nephropathy. Understanding conditional power (CP) and information fraction calculations of RC models may help in the design of clinical trials as well as provide support for the confirmatory endpoint at the time of accelerated approval. This paper provides calculation methods, with practical examples, for determining CP at an interim analysis for a RC model with longitudinal data, such as estimated glomerular filtration rate (eGFR) assessments to measure rate of change in eGFR slope.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2345\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2345","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

随机系数(RC)模型通常用于临床试验,以估计纵向数据随时间的变化率。利用替代终点和验证性纵向终点加速批准以显示临床益处的试验是一种在各种治疗领域实施的策略,包括免疫球蛋白a肾病。了解RC模型的条件功率(CP)和信息分数计算可能有助于临床试验的设计,并在加速批准时为验证性终点提供支持。本文提供了在具有纵向数据的RC模型的中期分析中确定CP的计算方法和实例,例如估计肾小球滤过率(eGFR)评估,以测量eGFR斜率的变化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional power and information fraction calculations at an interim analysis for random coefficient models.

Random coefficient (RC) models are commonly used in clinical trials to estimate the rate of change over time in longitudinal data. Trials utilizing a surrogate endpoint for accelerated approval with a confirmatory longitudinal endpoint to show clinical benefit is a strategy implemented across various therapeutic areas, including immunoglobulin A nephropathy. Understanding conditional power (CP) and information fraction calculations of RC models may help in the design of clinical trials as well as provide support for the confirmatory endpoint at the time of accelerated approval. This paper provides calculation methods, with practical examples, for determining CP at an interim analysis for a RC model with longitudinal data, such as estimated glomerular filtration rate (eGFR) assessments to measure rate of change in eGFR slope.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信