Camille Roquencourt, Elodie Lamy, Emmanuelle Bardin, Philippe Devillier, Stanislas Grassin-Delyle
{"title":"PTR-TOF-MS呼气代谢组学数据归一化方法的基准研究。","authors":"Camille Roquencourt, Elodie Lamy, Emmanuelle Bardin, Philippe Devillier, Stanislas Grassin-Delyle","doi":"10.1088/1752-7163/ad08ce","DOIUrl":null,"url":null,"abstract":"<p><p>Volatilomics is the branch of metabolomics dedicated to the analysis of volatile organic compounds in exhaled breath for medical diagnostic or therapeutic monitoring purposes. Real-time mass spectrometry (MS) technologies such as proton transfer reaction (PTR) MS are commonly used, and data normalisation is an important step to discard unwanted variation from non-biological sources, as batch effects and loss of sensitivity over time may be observed. As normalisation methods for real-time breath analysis have been poorly investigated, we aimed to benchmark known metabolomic data normalisation methods and apply them to PTR-MS data analysis. We compared seven normalisation methods, five statistically based and two using multiple standard metabolites, on two datasets from clinical trials for COVID-19 diagnosis in patients from the emergency department or intensive care unit. We evaluated different means of feature selection to select the standard metabolites, as well as the use of multiple repeat measurements of ambient air to train the normalisation methods. We show that the normalisation tools can correct for time-dependent drift. The methods that provided the best corrections for both cohorts were probabilistic quotient normalisation and normalisation using optimal selection of multiple internal standards. Normalisation also improved the diagnostic performance of the machine learning models, significantly increasing sensitivity, specificity and area under the receiver operating characteristic (ROC) curve for the diagnosis of COVID-19. Our results highlight the importance of adding an appropriate normalisation step during the processing of PTR-MS data, which allows significant improvements in the predictive performance of statistical models.<b>Clinical trials</b>: VOC-COVID-Diag (EudraCT 2020-A02682-37); RECORDS trial (EudraCT 2020-000296-21).</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A benchmark study of data normalisation methods for PTR-TOF-MS exhaled breath metabolomics.\",\"authors\":\"Camille Roquencourt, Elodie Lamy, Emmanuelle Bardin, Philippe Devillier, Stanislas Grassin-Delyle\",\"doi\":\"10.1088/1752-7163/ad08ce\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Volatilomics is the branch of metabolomics dedicated to the analysis of volatile organic compounds in exhaled breath for medical diagnostic or therapeutic monitoring purposes. Real-time mass spectrometry (MS) technologies such as proton transfer reaction (PTR) MS are commonly used, and data normalisation is an important step to discard unwanted variation from non-biological sources, as batch effects and loss of sensitivity over time may be observed. As normalisation methods for real-time breath analysis have been poorly investigated, we aimed to benchmark known metabolomic data normalisation methods and apply them to PTR-MS data analysis. We compared seven normalisation methods, five statistically based and two using multiple standard metabolites, on two datasets from clinical trials for COVID-19 diagnosis in patients from the emergency department or intensive care unit. We evaluated different means of feature selection to select the standard metabolites, as well as the use of multiple repeat measurements of ambient air to train the normalisation methods. We show that the normalisation tools can correct for time-dependent drift. The methods that provided the best corrections for both cohorts were probabilistic quotient normalisation and normalisation using optimal selection of multiple internal standards. Normalisation also improved the diagnostic performance of the machine learning models, significantly increasing sensitivity, specificity and area under the receiver operating characteristic (ROC) curve for the diagnosis of COVID-19. Our results highlight the importance of adding an appropriate normalisation step during the processing of PTR-MS data, which allows significant improvements in the predictive performance of statistical models.<b>Clinical trials</b>: VOC-COVID-Diag (EudraCT 2020-A02682-37); RECORDS trial (EudraCT 2020-000296-21).</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad08ce\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad08ce","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A benchmark study of data normalisation methods for PTR-TOF-MS exhaled breath metabolomics.
Volatilomics is the branch of metabolomics dedicated to the analysis of volatile organic compounds in exhaled breath for medical diagnostic or therapeutic monitoring purposes. Real-time mass spectrometry (MS) technologies such as proton transfer reaction (PTR) MS are commonly used, and data normalisation is an important step to discard unwanted variation from non-biological sources, as batch effects and loss of sensitivity over time may be observed. As normalisation methods for real-time breath analysis have been poorly investigated, we aimed to benchmark known metabolomic data normalisation methods and apply them to PTR-MS data analysis. We compared seven normalisation methods, five statistically based and two using multiple standard metabolites, on two datasets from clinical trials for COVID-19 diagnosis in patients from the emergency department or intensive care unit. We evaluated different means of feature selection to select the standard metabolites, as well as the use of multiple repeat measurements of ambient air to train the normalisation methods. We show that the normalisation tools can correct for time-dependent drift. The methods that provided the best corrections for both cohorts were probabilistic quotient normalisation and normalisation using optimal selection of multiple internal standards. Normalisation also improved the diagnostic performance of the machine learning models, significantly increasing sensitivity, specificity and area under the receiver operating characteristic (ROC) curve for the diagnosis of COVID-19. Our results highlight the importance of adding an appropriate normalisation step during the processing of PTR-MS data, which allows significant improvements in the predictive performance of statistical models.Clinical trials: VOC-COVID-Diag (EudraCT 2020-A02682-37); RECORDS trial (EudraCT 2020-000296-21).
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.