用立体阵列同位素标记(SAIL)方法研究了蛋白质中赖氨酸侧链的构象特征和电离态。

Q3 Physics and Astronomy
Magnetic resonance (Gottingen, Germany) Pub Date : 2021-04-26 eCollection Date: 2021-01-01 DOI:10.5194/mr-2-223-2021
Mitsuhiro Takeda, Yohei Miyanoiri, Tsutomu Terauchi, Masatsune Kainosho
{"title":"用立体阵列同位素标记(SAIL)方法研究了蛋白质中赖氨酸侧链的构象特征和电离态。","authors":"Mitsuhiro Takeda,&nbsp;Yohei Miyanoiri,&nbsp;Tsutomu Terauchi,&nbsp;Masatsune Kainosho","doi":"10.5194/mr-2-223-2021","DOIUrl":null,"url":null,"abstract":"<p><p>Although both the <i>hydrophobic</i> aliphatic chain and <i>hydrophilic</i> <math><mi>ζ</mi></math>-amino group of the Lys side chain presumably contribute to the structures and functions of proteins, the <i>dual</i> nature of the Lys residue has not been fully investigated using NMR spectroscopy, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain. We describe herein a robust strategy to address the current situation, using various isotope-aided NMR technologies. The feasibility of our approach is demonstrated for the <math><mrow><mi>Δ</mi><mo>+</mo></mrow></math>PHS/V66K variant of staphylococcal nuclease (SNase), which contains 21 Lys residues, including the engineered Lys-66 with an unusually low p<math><mrow><msub><mi>K</mi><mi>a</mi></msub></mrow></math> of <math><mo>∼</mo></math> 5.6. All of the NMR signals for the 21 Lys residues were sequentially and stereospecifically assigned using the stereo-array isotope-labeled Lys (SAIL-Lys), [U-<math><msup><mi></mi><mn>13</mn></msup></math>C,<math><msup><mi></mi><mn>15</mn></msup></math>N; <math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math>,<math><mrow><msub><mi>γ</mi><mn>2</mn></msub></mrow></math>,<math><mrow><msub><mi>δ</mi><mn>2</mn></msub></mrow></math>,<math><mrow><msub><mi>ε</mi><mn>3</mn></msub></mrow></math>-D<math><msub><mi></mi><mn>4</mn></msub></math>]-Lys. The complete set of assigned <math><msup><mi></mi><mn>1</mn></msup></math>H, <math><msup><mi></mi><mn>13</mn></msup></math>C, and <math><msup><mi></mi><mn>15</mn></msup></math>N NMR signals for the Lys side-chain moieties affords useful structural information. For example, the set includes the characteristic chemical shifts for the <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>δ</mi></msup></math>, <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>ε</mi></msup></math>, and <math><msup><mi></mi><mn>15</mn></msup></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math> signals for Lys-66, which has the deprotonated <math><mi>ζ</mi></math>-amino group, and the large upfield shifts for the <math><msup><mi></mi><mn>1</mn></msup></math>H and <math><msup><mi></mi><mn>13</mn></msup></math>C signals for the Lys-9, Lys-28, Lys-84, Lys-110, and Lys-133 side chains, which are indicative of nearby aromatic rings. The <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>ε</mi></msup></math> and <math><msup><mi></mi><mn>15</mn></msup></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math> chemical shifts of the SNase variant selectively labeled with either [<math><mi>ε</mi></math>-<math><msup><mi></mi><mn>13</mn></msup></math>C;<math><mi>ε</mi></math>,<math><mi>ε</mi></math>-D<math><msub><mi></mi><mn>2</mn></msub></math>]-Lys or SAIL-Lys, dissolved in H<math><msub><mi></mi><mn>2</mn></msub></math>O and D<math><msub><mi></mi><mn>2</mn></msub></math>O, showed that the deuterium-induced shifts for Lys-66 were substantially different from those of the other 20 Lys residues. Namely, the deuterium-induced shifts of the <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>ε</mi></msup></math> and <math><msup><mi></mi><mn>15</mn></msup></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math> signals depend on the ionization states of the <math><mi>ζ</mi></math>-amino group, i.e., <math><mo>-</mo></math>0.32 ppm for <math><mrow><mi>Δ</mi><msup><mi>δ</mi><mn>13</mn></msup></mrow></math>C<math><msup><mi></mi><mi>ε</mi></msup></math> [N<math><msup><mi></mi><mi>ζ</mi></msup></math>D<math><mrow><msubsup><mi></mi><mn>3</mn><mo>+</mo></msubsup></mrow></math>-N<math><msup><mi></mi><mi>ζ</mi></msup></math>H<math><mrow><msubsup><mi></mi><mn>3</mn><mo>+</mo></msubsup></mrow></math>] vs. <math><mo>-</mo></math>0.21 ppm for <math><mrow><mi>Δ</mi><msup><mi>δ</mi><mn>13</mn></msup></mrow></math>C<math><msup><mi></mi><mi>ε</mi></msup></math> [N<math><msup><mi></mi><mi>ζ</mi></msup></math>D<math><msub><mi></mi><mn>2</mn></msub></math>-N<math><msup><mi></mi><mi>ζ</mi></msup></math>H<math><msub><mi></mi><mn>2</mn></msub></math>] and <math><mo>-</mo></math>1.1 ppm for <math><mrow><mi>Δ</mi><msup><mi>δ</mi><mn>15</mn></msup></mrow></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math>[N<math><msup><mi></mi><mi>ζ</mi></msup></math>D<math><mrow><msubsup><mi></mi><mn>3</mn><mo>+</mo></msubsup></mrow></math>-N<math><msup><mi></mi><mi>ζ</mi></msup></math>H<math><mrow><msubsup><mi></mi><mn>3</mn><mo>+</mo></msubsup></mrow></math>] vs. <math><mo>-</mo></math>1.8 ppm for <math><mrow><mi>Δ</mi><msup><mi>δ</mi><mn>15</mn></msup></mrow></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math>[N<math><msup><mi></mi><mi>ζ</mi></msup></math>D<math><msub><mi></mi><mn>2</mn></msub></math>-N<math><msup><mi></mi><mi>ζ</mi></msup></math>H<math><msub><mi></mi><mn>2</mn></msub></math>]. Since the 1D <math><msup><mi></mi><mn>13</mn></msup></math>C NMR spectrum of a protein selectively labeled with [<math><mi>ε</mi></math>-<math><msup><mi></mi><mn>13</mn></msup></math>C;<math><mi>ε</mi></math>,<math><mi>ε</mi></math>-D<math><msub><mi></mi><mn>2</mn></msub></math>]-Lys shows narrow (<math><mo>></mo></math> 2 Hz) and well-dispersed <math><msup><mi></mi><mn>13</mn></msup></math>C signals, the deuterium-induced shift difference of 0.11 ppm for the protonated and deprotonated <math><mi>ζ</mi></math>-amino groups, which corresponds to 16.5 Hz at a field strength of 14 T (150 MHz for <math><msup><mi></mi><mn>13</mn></msup></math>C), could be accurately measured. Although the isotope shift difference itself may not be absolutely decisive to distinguish the ionization state of the <math><mi>ζ</mi></math>-amino group, the <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>δ</mi></msup></math>, <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>ε</mi></msup></math>, and <math><msup><mi></mi><mn>15</mn></msup></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math> signals for a Lys residue with a deprotonated <math><mi>ζ</mi></math>-amino group are likely to exhibit distinctive chemical shifts as compared to the <i>normal</i> residues with protonated <math><mi>ζ</mi></math>-amino groups. Therefore, the isotope shifts would provide a useful auxiliary index for identifying Lys residues with deprotonated <math><mi>ζ</mi></math>-amino groups at physiological pH levels.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":"2 1","pages":"223-237"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539808/pdf/","citationCount":"0","resultStr":"{\"title\":\"Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method.\",\"authors\":\"Mitsuhiro Takeda,&nbsp;Yohei Miyanoiri,&nbsp;Tsutomu Terauchi,&nbsp;Masatsune Kainosho\",\"doi\":\"10.5194/mr-2-223-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although both the <i>hydrophobic</i> aliphatic chain and <i>hydrophilic</i> <math><mi>ζ</mi></math>-amino group of the Lys side chain presumably contribute to the structures and functions of proteins, the <i>dual</i> nature of the Lys residue has not been fully investigated using NMR spectroscopy, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain. We describe herein a robust strategy to address the current situation, using various isotope-aided NMR technologies. The feasibility of our approach is demonstrated for the <math><mrow><mi>Δ</mi><mo>+</mo></mrow></math>PHS/V66K variant of staphylococcal nuclease (SNase), which contains 21 Lys residues, including the engineered Lys-66 with an unusually low p<math><mrow><msub><mi>K</mi><mi>a</mi></msub></mrow></math> of <math><mo>∼</mo></math> 5.6. All of the NMR signals for the 21 Lys residues were sequentially and stereospecifically assigned using the stereo-array isotope-labeled Lys (SAIL-Lys), [U-<math><msup><mi></mi><mn>13</mn></msup></math>C,<math><msup><mi></mi><mn>15</mn></msup></math>N; <math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math>,<math><mrow><msub><mi>γ</mi><mn>2</mn></msub></mrow></math>,<math><mrow><msub><mi>δ</mi><mn>2</mn></msub></mrow></math>,<math><mrow><msub><mi>ε</mi><mn>3</mn></msub></mrow></math>-D<math><msub><mi></mi><mn>4</mn></msub></math>]-Lys. The complete set of assigned <math><msup><mi></mi><mn>1</mn></msup></math>H, <math><msup><mi></mi><mn>13</mn></msup></math>C, and <math><msup><mi></mi><mn>15</mn></msup></math>N NMR signals for the Lys side-chain moieties affords useful structural information. For example, the set includes the characteristic chemical shifts for the <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>δ</mi></msup></math>, <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>ε</mi></msup></math>, and <math><msup><mi></mi><mn>15</mn></msup></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math> signals for Lys-66, which has the deprotonated <math><mi>ζ</mi></math>-amino group, and the large upfield shifts for the <math><msup><mi></mi><mn>1</mn></msup></math>H and <math><msup><mi></mi><mn>13</mn></msup></math>C signals for the Lys-9, Lys-28, Lys-84, Lys-110, and Lys-133 side chains, which are indicative of nearby aromatic rings. The <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>ε</mi></msup></math> and <math><msup><mi></mi><mn>15</mn></msup></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math> chemical shifts of the SNase variant selectively labeled with either [<math><mi>ε</mi></math>-<math><msup><mi></mi><mn>13</mn></msup></math>C;<math><mi>ε</mi></math>,<math><mi>ε</mi></math>-D<math><msub><mi></mi><mn>2</mn></msub></math>]-Lys or SAIL-Lys, dissolved in H<math><msub><mi></mi><mn>2</mn></msub></math>O and D<math><msub><mi></mi><mn>2</mn></msub></math>O, showed that the deuterium-induced shifts for Lys-66 were substantially different from those of the other 20 Lys residues. Namely, the deuterium-induced shifts of the <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>ε</mi></msup></math> and <math><msup><mi></mi><mn>15</mn></msup></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math> signals depend on the ionization states of the <math><mi>ζ</mi></math>-amino group, i.e., <math><mo>-</mo></math>0.32 ppm for <math><mrow><mi>Δ</mi><msup><mi>δ</mi><mn>13</mn></msup></mrow></math>C<math><msup><mi></mi><mi>ε</mi></msup></math> [N<math><msup><mi></mi><mi>ζ</mi></msup></math>D<math><mrow><msubsup><mi></mi><mn>3</mn><mo>+</mo></msubsup></mrow></math>-N<math><msup><mi></mi><mi>ζ</mi></msup></math>H<math><mrow><msubsup><mi></mi><mn>3</mn><mo>+</mo></msubsup></mrow></math>] vs. <math><mo>-</mo></math>0.21 ppm for <math><mrow><mi>Δ</mi><msup><mi>δ</mi><mn>13</mn></msup></mrow></math>C<math><msup><mi></mi><mi>ε</mi></msup></math> [N<math><msup><mi></mi><mi>ζ</mi></msup></math>D<math><msub><mi></mi><mn>2</mn></msub></math>-N<math><msup><mi></mi><mi>ζ</mi></msup></math>H<math><msub><mi></mi><mn>2</mn></msub></math>] and <math><mo>-</mo></math>1.1 ppm for <math><mrow><mi>Δ</mi><msup><mi>δ</mi><mn>15</mn></msup></mrow></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math>[N<math><msup><mi></mi><mi>ζ</mi></msup></math>D<math><mrow><msubsup><mi></mi><mn>3</mn><mo>+</mo></msubsup></mrow></math>-N<math><msup><mi></mi><mi>ζ</mi></msup></math>H<math><mrow><msubsup><mi></mi><mn>3</mn><mo>+</mo></msubsup></mrow></math>] vs. <math><mo>-</mo></math>1.8 ppm for <math><mrow><mi>Δ</mi><msup><mi>δ</mi><mn>15</mn></msup></mrow></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math>[N<math><msup><mi></mi><mi>ζ</mi></msup></math>D<math><msub><mi></mi><mn>2</mn></msub></math>-N<math><msup><mi></mi><mi>ζ</mi></msup></math>H<math><msub><mi></mi><mn>2</mn></msub></math>]. Since the 1D <math><msup><mi></mi><mn>13</mn></msup></math>C NMR spectrum of a protein selectively labeled with [<math><mi>ε</mi></math>-<math><msup><mi></mi><mn>13</mn></msup></math>C;<math><mi>ε</mi></math>,<math><mi>ε</mi></math>-D<math><msub><mi></mi><mn>2</mn></msub></math>]-Lys shows narrow (<math><mo>></mo></math> 2 Hz) and well-dispersed <math><msup><mi></mi><mn>13</mn></msup></math>C signals, the deuterium-induced shift difference of 0.11 ppm for the protonated and deprotonated <math><mi>ζ</mi></math>-amino groups, which corresponds to 16.5 Hz at a field strength of 14 T (150 MHz for <math><msup><mi></mi><mn>13</mn></msup></math>C), could be accurately measured. Although the isotope shift difference itself may not be absolutely decisive to distinguish the ionization state of the <math><mi>ζ</mi></math>-amino group, the <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>δ</mi></msup></math>, <math><msup><mi></mi><mn>13</mn></msup></math>C<math><msup><mi></mi><mi>ε</mi></msup></math>, and <math><msup><mi></mi><mn>15</mn></msup></math>N<math><msup><mi></mi><mi>ζ</mi></msup></math> signals for a Lys residue with a deprotonated <math><mi>ζ</mi></math>-amino group are likely to exhibit distinctive chemical shifts as compared to the <i>normal</i> residues with protonated <math><mi>ζ</mi></math>-amino groups. Therefore, the isotope shifts would provide a useful auxiliary index for identifying Lys residues with deprotonated <math><mi>ζ</mi></math>-amino groups at physiological pH levels.</p>\",\"PeriodicalId\":93333,\"journal\":{\"name\":\"Magnetic resonance (Gottingen, Germany)\",\"volume\":\"2 1\",\"pages\":\"223-237\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539808/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance (Gottingen, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/mr-2-223-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-2-223-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

尽管赖氨酸侧链的疏水性脂族链和亲水性ζ-氨基可能都有助于蛋白质的结构和功能,但由于缺乏适当的方法来获得其长连续亚甲基链的全面信息,赖氨酸残基的双重性质尚未使用NMR光谱进行充分研究。我们在本文中描述了一种使用各种同位素辅助NMR技术来解决当前情况的稳健策略。葡萄球菌核酸酶(SNase)的Δ+PHS/V66K变体证明了我们方法的可行性,该变体含有21个赖氨酸残基,包括pKa异常低的工程化赖氨酸-66 5.6.使用立体阵列同位素标记的Lys(SAIL-Lys)[U-13C,15N;β2,γ2,δ2,ε3-D4]-Lys,对21个Lys残基的所有NMR信号进行顺序和立体特异性分配。Lys侧链部分的一整套指定的1H、13C和15N NMR信号提供了有用的结构信息。例如,该集合包括具有去质子化ζ-氨基的Lys-66的13Cδ、13Cε和15Nζ信号的特征化学位移,以及Lys-9、Lys-28、Lys-84、Lys-110和Lys-133侧链的1H和13C信号的大上场位移,其指示附近的芳环。溶解在H2O和D2O中的用[ε-13C;ε,ε-D2]-Lys或SAIL-Lys选择性标记的SNase变体的13Cε和15Nζ化学位移表明,氘诱导的Lys-66的位移与其他20个Lys残基的位移显著不同。也就是说,氘诱导的13Cε和15Nζ信号的位移取决于ζ-氨基的电离态,即-0.32 Δδ13Cε[NζD3+-NζH3+]的ppm与-0.21 Δδ13Cε[NζD2-NζH2]和-1.1的ppm Δδ15Nζ[NζD3+-NζH3+]与-1.8的ppm Δδ15Nζ[NζD2-NζH2]的ppm。由于用[ε-13C;ε,ε-D2]-Lys选择性标记的蛋白质的1D 13C NMR光谱显示窄(> 2. Hz)和良好分散的13C信号,氘引起的0.11的位移差 质子化和去质子化ζ-氨基的ppm,相当于16.5 Hz,场强为14 T(150 用于13C的MHz)。尽管同位素位移差异本身可能不是区分ζ-氨基电离状态的绝对决定性因素,但与具有质子化ζ-氨基酸的正常残基相比,具有去质子化ξ-氨基的Lys残基的13Cδ、13Cε和15Nζ信号可能表现出独特的化学位移。因此,同位素位移将为鉴定生理pH水平下具有去质子化ζ-氨基的赖氨酸残基提供有用的辅助指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method.

Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method.

Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method.

Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method.

Although both the hydrophobic aliphatic chain and hydrophilic ζ-amino group of the Lys side chain presumably contribute to the structures and functions of proteins, the dual nature of the Lys residue has not been fully investigated using NMR spectroscopy, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain. We describe herein a robust strategy to address the current situation, using various isotope-aided NMR technologies. The feasibility of our approach is demonstrated for the Δ+PHS/V66K variant of staphylococcal nuclease (SNase), which contains 21 Lys residues, including the engineered Lys-66 with an unusually low pKa of  5.6. All of the NMR signals for the 21 Lys residues were sequentially and stereospecifically assigned using the stereo-array isotope-labeled Lys (SAIL-Lys), [U-13C,15N; β2,γ2,δ2,ε3-D4]-Lys. The complete set of assigned 1H, 13C, and 15N NMR signals for the Lys side-chain moieties affords useful structural information. For example, the set includes the characteristic chemical shifts for the 13Cδ, 13Cε, and 15Nζ signals for Lys-66, which has the deprotonated ζ-amino group, and the large upfield shifts for the 1H and 13C signals for the Lys-9, Lys-28, Lys-84, Lys-110, and Lys-133 side chains, which are indicative of nearby aromatic rings. The 13Cε and 15Nζ chemical shifts of the SNase variant selectively labeled with either [ε-13C;ε,ε-D2]-Lys or SAIL-Lys, dissolved in H2O and D2O, showed that the deuterium-induced shifts for Lys-66 were substantially different from those of the other 20 Lys residues. Namely, the deuterium-induced shifts of the 13Cε and 15Nζ signals depend on the ionization states of the ζ-amino group, i.e., -0.32 ppm for Δδ13Cε [NζD3+-NζH3+] vs. -0.21 ppm for Δδ13Cε [NζD2-NζH2] and -1.1 ppm for Δδ15Nζ[NζD3+-NζH3+] vs. -1.8 ppm for Δδ15Nζ[NζD2-NζH2]. Since the 1D 13C NMR spectrum of a protein selectively labeled with [ε-13C;ε,ε-D2]-Lys shows narrow (> 2 Hz) and well-dispersed 13C signals, the deuterium-induced shift difference of 0.11 ppm for the protonated and deprotonated ζ-amino groups, which corresponds to 16.5 Hz at a field strength of 14 T (150 MHz for 13C), could be accurately measured. Although the isotope shift difference itself may not be absolutely decisive to distinguish the ionization state of the ζ-amino group, the 13Cδ, 13Cε, and 15Nζ signals for a Lys residue with a deprotonated ζ-amino group are likely to exhibit distinctive chemical shifts as compared to the normal residues with protonated ζ-amino groups. Therefore, the isotope shifts would provide a useful auxiliary index for identifying Lys residues with deprotonated ζ-amino groups at physiological pH levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信