通过直接使用成对序列相关性和取代的远程蛋白质序列的新比对方法。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2023-10-12 eCollection Date: 2023-01-01 DOI:10.3389/fbinf.2023.1227193
Kejue Jia, Mesih Kilinc, Robert L Jernigan
{"title":"通过直接使用成对序列相关性和取代的远程蛋白质序列的新比对方法。","authors":"Kejue Jia, Mesih Kilinc, Robert L Jernigan","doi":"10.3389/fbinf.2023.1227193","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding protein sequences and how they relate to the functions of proteins is extremely important. One of the most basic operations in bioinformatics is sequence alignment and usually the first things learned from these are which positions are the most conserved and often these are critical parts of the structure, such as enzyme active site residues. In addition, the contact pairs in a protein usually correspond closely to the correlations between residue positions in the multiple sequence alignment, and these usually change in a systematic and coordinated way, if one position changes then the other member of the pair also changes to compensate. In the present work, these correlated pairs are taken as anchor points for a new type of sequence alignment. The main advantage of the method here is its combining the remote homolog detection from our method PROST with pairwise sequence substitutions in the rigorous method from Kleinjung et al. We show a few examples of some resulting sequence alignments, and how they can lead to improvements in alignments for function, even for a disordered protein.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602800/pdf/","citationCount":"0","resultStr":"{\"title\":\"New alignment method for remote protein sequences by the direct use of pairwise sequence correlations and substitutions.\",\"authors\":\"Kejue Jia, Mesih Kilinc, Robert L Jernigan\",\"doi\":\"10.3389/fbinf.2023.1227193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding protein sequences and how they relate to the functions of proteins is extremely important. One of the most basic operations in bioinformatics is sequence alignment and usually the first things learned from these are which positions are the most conserved and often these are critical parts of the structure, such as enzyme active site residues. In addition, the contact pairs in a protein usually correspond closely to the correlations between residue positions in the multiple sequence alignment, and these usually change in a systematic and coordinated way, if one position changes then the other member of the pair also changes to compensate. In the present work, these correlated pairs are taken as anchor points for a new type of sequence alignment. The main advantage of the method here is its combining the remote homolog detection from our method PROST with pairwise sequence substitutions in the rigorous method from Kleinjung et al. We show a few examples of some resulting sequence alignments, and how they can lead to improvements in alignments for function, even for a disordered protein.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2023.1227193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2023.1227193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解蛋白质序列及其与蛋白质功能的关系是极其重要的。生物信息学中最基本的操作之一是序列比对,通常从这些操作中学到的第一件事是哪些位置最保守,而且这些位置通常是结构的关键部分,例如酶活性位点残基。此外,蛋白质中的接触对通常与多序列比对中残基位置之间的相关性密切对应,并且这些相关性通常以系统和协调的方式发生变化,如果一个位置发生变化,则该对的另一个成员也发生变化以进行补偿。在本工作中,将这些相关对作为一种新型序列比对的锚点。该方法的主要优点是将我们的方法PROST的远程同源物检测与Kleinung等人的严格方法中的成对序列替换相结合。我们展示了一些由此产生的序列比对的例子,以及它们如何改善功能比对,甚至是紊乱的蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New alignment method for remote protein sequences by the direct use of pairwise sequence correlations and substitutions.

Understanding protein sequences and how they relate to the functions of proteins is extremely important. One of the most basic operations in bioinformatics is sequence alignment and usually the first things learned from these are which positions are the most conserved and often these are critical parts of the structure, such as enzyme active site residues. In addition, the contact pairs in a protein usually correspond closely to the correlations between residue positions in the multiple sequence alignment, and these usually change in a systematic and coordinated way, if one position changes then the other member of the pair also changes to compensate. In the present work, these correlated pairs are taken as anchor points for a new type of sequence alignment. The main advantage of the method here is its combining the remote homolog detection from our method PROST with pairwise sequence substitutions in the rigorous method from Kleinjung et al. We show a few examples of some resulting sequence alignments, and how they can lead to improvements in alignments for function, even for a disordered protein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信