神经元线粒体钙摄取的基因消融可阻止阿尔茨海默病的进展。

Pooja Jadiya, Elena Berezhnaya, Devin W Kolmetzky, Dhanendra Tomar, Henry M Cohen, Shatakshi Shukla, Manfred Thomas, Salman Khaledi, Joanne F Garbincius, Liam Kennedy, Oniel Salik, Alycia N Hildebrand, John W Elrod
{"title":"神经元线粒体钙摄取的基因消融可阻止阿尔茨海默病的进展。","authors":"Pooja Jadiya, Elena Berezhnaya, Devin W Kolmetzky, Dhanendra Tomar, Henry M Cohen, Shatakshi Shukla, Manfred Thomas, Salman Khaledi, Joanne F Garbincius, Liam Kennedy, Oniel Salik, Alycia N Hildebrand, John W Elrod","doi":"10.1101/2023.10.11.561889","DOIUrl":null,"url":null,"abstract":"<p><p>Loss of <sub>m</sub> Ca <sup>2+</sup> efflux capacity contributes to the pathogenesis and progression of Alzheimer's disease (AD) by promoting mitochondrial Ca <sup>2+</sup> ( <sub>m</sub> Ca <sup>2+</sup> ) overload. Here, we utilized loss-of-function genetic mouse models to causally evaluate the role of <sub>m</sub> Ca <sup>2+</sup> uptake by conditionally deleting the mitochondrial calcium uniporter channel (mtCU) in a robust mouse model of AD. Loss of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline in 3xTg-AD mice. Knockdown of <i>Mcu</i> in an <i>in vitro</i> model of AD significantly reduced matrix Ca <sup>2+</sup> content, redox imbalance, and mitochondrial dysfunction. The preservation of mitochondrial function rescued the AD-dependent decline in autophagic capacity and protected neurons against amyloidosis and cell death. This was corroborated by <i>in vivo</i> data showing improved mitochondrial structure and apposition in AD mice with loss of neuronal <i>Mcu</i> . These results suggest that inhibition of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake represents a powerful therapeutic target to impede AD progression.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic ablation of neuronal mitochondrial calcium uptake impedes Alzheimer's disease progression.\",\"authors\":\"Pooja Jadiya, Elena Berezhnaya, Devin W Kolmetzky, Dhanendra Tomar, Henry M Cohen, Shatakshi Shukla, Manfred Thomas, Salman Khaledi, Joanne F Garbincius, Liam Kennedy, Oniel Salik, Alycia N Hildebrand, John W Elrod\",\"doi\":\"10.1101/2023.10.11.561889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loss of <sub>m</sub> Ca <sup>2+</sup> efflux capacity contributes to the pathogenesis and progression of Alzheimer's disease (AD) by promoting mitochondrial Ca <sup>2+</sup> ( <sub>m</sub> Ca <sup>2+</sup> ) overload. Here, we utilized loss-of-function genetic mouse models to causally evaluate the role of <sub>m</sub> Ca <sup>2+</sup> uptake by conditionally deleting the mitochondrial calcium uniporter channel (mtCU) in a robust mouse model of AD. Loss of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline in 3xTg-AD mice. Knockdown of <i>Mcu</i> in an <i>in vitro</i> model of AD significantly reduced matrix Ca <sup>2+</sup> content, redox imbalance, and mitochondrial dysfunction. The preservation of mitochondrial function rescued the AD-dependent decline in autophagic capacity and protected neurons against amyloidosis and cell death. This was corroborated by <i>in vivo</i> data showing improved mitochondrial structure and apposition in AD mice with loss of neuronal <i>Mcu</i> . These results suggest that inhibition of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake represents a powerful therapeutic target to impede AD progression.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.10.11.561889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.11.561889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)的特征是淀粉样蛋白β在细胞外沉积、细胞内神经原纤维缠结、突触功能障碍和神经元细胞死亡。这些表型与神经元细胞内钙(i Ca2+)水平升高有关。最近,我们的研究小组报道,线粒体钙(mCa2+)超载,由于mCa2+外排能力的丧失,有助于AD的发展和进展。我们还注意到散发性AD脑样本中线粒体钙单转运通道(mtCU)的蛋白质组重塑,这表明AD中m Ca2+摄取发生了改变。由于mtCU是Ca2+摄入线粒体基质的主要机制,因此抑制mtCU有可能减少或防止AD中m Ca 2+过载,我们报道,在3xTg AD小鼠模型中,mtCU依赖性m Ca2+摄取的神经元特异性损失降低了Aβ和tau病理、突触功能障碍和认知能力下降。在AD细胞模型中敲除Mcu可显著降低基质Ca2+含量、氧化应激和细胞死亡。这些结果表明,抑制神经元m Ca2+摄取是阻碍AD进展的一个新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic ablation of neuronal mitochondrial calcium uptake impedes Alzheimer's disease progression.

Loss of m Ca 2+ efflux capacity contributes to the pathogenesis and progression of Alzheimer's disease (AD) by promoting mitochondrial Ca 2+ ( m Ca 2+ ) overload. Here, we utilized loss-of-function genetic mouse models to causally evaluate the role of m Ca 2+ uptake by conditionally deleting the mitochondrial calcium uniporter channel (mtCU) in a robust mouse model of AD. Loss of neuronal m Ca 2+ uptake reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline in 3xTg-AD mice. Knockdown of Mcu in an in vitro model of AD significantly reduced matrix Ca 2+ content, redox imbalance, and mitochondrial dysfunction. The preservation of mitochondrial function rescued the AD-dependent decline in autophagic capacity and protected neurons against amyloidosis and cell death. This was corroborated by in vivo data showing improved mitochondrial structure and apposition in AD mice with loss of neuronal Mcu . These results suggest that inhibition of neuronal m Ca 2+ uptake represents a powerful therapeutic target to impede AD progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信