Pooja Jadiya, Elena Berezhnaya, Devin W Kolmetzky, Dhanendra Tomar, Henry M Cohen, Shatakshi Shukla, Manfred Thomas, Salman Khaledi, Joanne F Garbincius, Liam Kennedy, Oniel Salik, Alycia N Hildebrand, John W Elrod
{"title":"神经元线粒体钙摄取的基因消融可阻止阿尔茨海默病的进展。","authors":"Pooja Jadiya, Elena Berezhnaya, Devin W Kolmetzky, Dhanendra Tomar, Henry M Cohen, Shatakshi Shukla, Manfred Thomas, Salman Khaledi, Joanne F Garbincius, Liam Kennedy, Oniel Salik, Alycia N Hildebrand, John W Elrod","doi":"10.1101/2023.10.11.561889","DOIUrl":null,"url":null,"abstract":"<p><p>Loss of <sub>m</sub> Ca <sup>2+</sup> efflux capacity contributes to the pathogenesis and progression of Alzheimer's disease (AD) by promoting mitochondrial Ca <sup>2+</sup> ( <sub>m</sub> Ca <sup>2+</sup> ) overload. Here, we utilized loss-of-function genetic mouse models to causally evaluate the role of <sub>m</sub> Ca <sup>2+</sup> uptake by conditionally deleting the mitochondrial calcium uniporter channel (mtCU) in a robust mouse model of AD. Loss of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline in 3xTg-AD mice. Knockdown of <i>Mcu</i> in an <i>in vitro</i> model of AD significantly reduced matrix Ca <sup>2+</sup> content, redox imbalance, and mitochondrial dysfunction. The preservation of mitochondrial function rescued the AD-dependent decline in autophagic capacity and protected neurons against amyloidosis and cell death. This was corroborated by <i>in vivo</i> data showing improved mitochondrial structure and apposition in AD mice with loss of neuronal <i>Mcu</i> . These results suggest that inhibition of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake represents a powerful therapeutic target to impede AD progression.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic ablation of neuronal mitochondrial calcium uptake impedes Alzheimer's disease progression.\",\"authors\":\"Pooja Jadiya, Elena Berezhnaya, Devin W Kolmetzky, Dhanendra Tomar, Henry M Cohen, Shatakshi Shukla, Manfred Thomas, Salman Khaledi, Joanne F Garbincius, Liam Kennedy, Oniel Salik, Alycia N Hildebrand, John W Elrod\",\"doi\":\"10.1101/2023.10.11.561889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loss of <sub>m</sub> Ca <sup>2+</sup> efflux capacity contributes to the pathogenesis and progression of Alzheimer's disease (AD) by promoting mitochondrial Ca <sup>2+</sup> ( <sub>m</sub> Ca <sup>2+</sup> ) overload. Here, we utilized loss-of-function genetic mouse models to causally evaluate the role of <sub>m</sub> Ca <sup>2+</sup> uptake by conditionally deleting the mitochondrial calcium uniporter channel (mtCU) in a robust mouse model of AD. Loss of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline in 3xTg-AD mice. Knockdown of <i>Mcu</i> in an <i>in vitro</i> model of AD significantly reduced matrix Ca <sup>2+</sup> content, redox imbalance, and mitochondrial dysfunction. The preservation of mitochondrial function rescued the AD-dependent decline in autophagic capacity and protected neurons against amyloidosis and cell death. This was corroborated by <i>in vivo</i> data showing improved mitochondrial structure and apposition in AD mice with loss of neuronal <i>Mcu</i> . These results suggest that inhibition of neuronal <sub>m</sub> Ca <sup>2+</sup> uptake represents a powerful therapeutic target to impede AD progression.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.10.11.561889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.11.561889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
阿尔茨海默病(AD)的特征是淀粉样蛋白β在细胞外沉积、细胞内神经原纤维缠结、突触功能障碍和神经元细胞死亡。这些表型与神经元细胞内钙(i Ca2+)水平升高有关。最近,我们的研究小组报道,线粒体钙(mCa2+)超载,由于mCa2+外排能力的丧失,有助于AD的发展和进展。我们还注意到散发性AD脑样本中线粒体钙单转运通道(mtCU)的蛋白质组重塑,这表明AD中m Ca2+摄取发生了改变。由于mtCU是Ca2+摄入线粒体基质的主要机制,因此抑制mtCU有可能减少或防止AD中m Ca 2+过载,我们报道,在3xTg AD小鼠模型中,mtCU依赖性m Ca2+摄取的神经元特异性损失降低了Aβ和tau病理、突触功能障碍和认知能力下降。在AD细胞模型中敲除Mcu可显著降低基质Ca2+含量、氧化应激和细胞死亡。这些结果表明,抑制神经元m Ca2+摄取是阻碍AD进展的一个新的治疗靶点。
Loss of m Ca 2+ efflux capacity contributes to the pathogenesis and progression of Alzheimer's disease (AD) by promoting mitochondrial Ca 2+ ( m Ca 2+ ) overload. Here, we utilized loss-of-function genetic mouse models to causally evaluate the role of m Ca 2+ uptake by conditionally deleting the mitochondrial calcium uniporter channel (mtCU) in a robust mouse model of AD. Loss of neuronal m Ca 2+ uptake reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline in 3xTg-AD mice. Knockdown of Mcu in an in vitro model of AD significantly reduced matrix Ca 2+ content, redox imbalance, and mitochondrial dysfunction. The preservation of mitochondrial function rescued the AD-dependent decline in autophagic capacity and protected neurons against amyloidosis and cell death. This was corroborated by in vivo data showing improved mitochondrial structure and apposition in AD mice with loss of neuronal Mcu . These results suggest that inhibition of neuronal m Ca 2+ uptake represents a powerful therapeutic target to impede AD progression.