{"title":"CBDT-Oglyc:使用基于ChiMIC的平衡决策表和特征选择预测O-糖基化位点。","authors":"Ying Zeng, Zheming Yuan, Yuan Chen, Ying Hu","doi":"10.1142/S0219720023500245","DOIUrl":null,"url":null,"abstract":"<p><p>O-glycosylation (Oglyc) plays an important role in various biological processes. The key to understanding the mechanisms of Oglyc is identifying the corresponding glycosylation sites. Two critical steps, feature selection and classifier design, greatly affect the accuracy of computational methods for predicting Oglyc sites. Based on an efficient feature selection algorithm and a classifier capable of handling imbalanced datasets, a new computational method, ChiMIC-based balanced decision table O-glycosylation (CBDT-Oglyc), is proposed. ChiMIC-based balanced decision table for O-glycosylation (CBDT-Oglyc), is proposed to predict Oglyc sites in proteins. Sequence characterization is performed by combining amino acid composition (AAC), undirected composition of [Formula: see text]-spaced amino acid pairs (undirected-CKSAAP) and pseudo-position-specific scoring matrix (PsePSSM). Chi-MIC-share algorithm is used for feature selection, which simplifies the model and improves predictive accuracy. For imbalanced classification, a backtracking method based on local chi-square test is designed, and then cost-sensitive learning is incorporated to construct a novel classifier named ChiMIC-based balanced decision table (CBDT). Based on a 1:49 (positives:negatives) training set, the CBDT classifier achieves significantly better prediction performance than traditional classifiers. Moreover, the independent test results on separate human and mouse glycoproteins show that CBDT-Oglyc outperforms previous methods in global accuracy. CBDT-Oglyc shows great promise in predicting Oglyc sites and is expected to facilitate further experimental studies on protein glycosylation.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2350024"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CBDT-Oglyc: Prediction of O-glycosylation sites using ChiMIC-based balanced decision table and feature selection.\",\"authors\":\"Ying Zeng, Zheming Yuan, Yuan Chen, Ying Hu\",\"doi\":\"10.1142/S0219720023500245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>O-glycosylation (Oglyc) plays an important role in various biological processes. The key to understanding the mechanisms of Oglyc is identifying the corresponding glycosylation sites. Two critical steps, feature selection and classifier design, greatly affect the accuracy of computational methods for predicting Oglyc sites. Based on an efficient feature selection algorithm and a classifier capable of handling imbalanced datasets, a new computational method, ChiMIC-based balanced decision table O-glycosylation (CBDT-Oglyc), is proposed. ChiMIC-based balanced decision table for O-glycosylation (CBDT-Oglyc), is proposed to predict Oglyc sites in proteins. Sequence characterization is performed by combining amino acid composition (AAC), undirected composition of [Formula: see text]-spaced amino acid pairs (undirected-CKSAAP) and pseudo-position-specific scoring matrix (PsePSSM). Chi-MIC-share algorithm is used for feature selection, which simplifies the model and improves predictive accuracy. For imbalanced classification, a backtracking method based on local chi-square test is designed, and then cost-sensitive learning is incorporated to construct a novel classifier named ChiMIC-based balanced decision table (CBDT). Based on a 1:49 (positives:negatives) training set, the CBDT classifier achieves significantly better prediction performance than traditional classifiers. Moreover, the independent test results on separate human and mouse glycoproteins show that CBDT-Oglyc outperforms previous methods in global accuracy. CBDT-Oglyc shows great promise in predicting Oglyc sites and is expected to facilitate further experimental studies on protein glycosylation.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\" \",\"pages\":\"2350024\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720023500245\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500245","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
CBDT-Oglyc: Prediction of O-glycosylation sites using ChiMIC-based balanced decision table and feature selection.
O-glycosylation (Oglyc) plays an important role in various biological processes. The key to understanding the mechanisms of Oglyc is identifying the corresponding glycosylation sites. Two critical steps, feature selection and classifier design, greatly affect the accuracy of computational methods for predicting Oglyc sites. Based on an efficient feature selection algorithm and a classifier capable of handling imbalanced datasets, a new computational method, ChiMIC-based balanced decision table O-glycosylation (CBDT-Oglyc), is proposed. ChiMIC-based balanced decision table for O-glycosylation (CBDT-Oglyc), is proposed to predict Oglyc sites in proteins. Sequence characterization is performed by combining amino acid composition (AAC), undirected composition of [Formula: see text]-spaced amino acid pairs (undirected-CKSAAP) and pseudo-position-specific scoring matrix (PsePSSM). Chi-MIC-share algorithm is used for feature selection, which simplifies the model and improves predictive accuracy. For imbalanced classification, a backtracking method based on local chi-square test is designed, and then cost-sensitive learning is incorporated to construct a novel classifier named ChiMIC-based balanced decision table (CBDT). Based on a 1:49 (positives:negatives) training set, the CBDT classifier achieves significantly better prediction performance than traditional classifiers. Moreover, the independent test results on separate human and mouse glycoproteins show that CBDT-Oglyc outperforms previous methods in global accuracy. CBDT-Oglyc shows great promise in predicting Oglyc sites and is expected to facilitate further experimental studies on protein glycosylation.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.