Philip Heimann, Nicholas J Hartley, Ichiro Inoue, Victor Tkachenko, Andre Antoine, Fabien Dorchies, Roger Falcone, Jérôme Gaudin, Hauke Höppner, Yuichi Inubushi, Konrad J Kapcia, Hae Ja Lee, Vladimir Lipp, Paloma Martinez, Nikita Medvedev, Franz Tavella, Sven Toleikis, Makina Yabashi, Toshinori Yabuuchi, Jumpei Yamada, Beata Ziaja
{"title":"x射线驱动下金刚石的非热结构转变。","authors":"Philip Heimann, Nicholas J Hartley, Ichiro Inoue, Victor Tkachenko, Andre Antoine, Fabien Dorchies, Roger Falcone, Jérôme Gaudin, Hauke Höppner, Yuichi Inubushi, Konrad J Kapcia, Hae Ja Lee, Vladimir Lipp, Paloma Martinez, Nikita Medvedev, Franz Tavella, Sven Toleikis, Makina Yabashi, Toshinori Yabuuchi, Jumpei Yamada, Beata Ziaja","doi":"10.1063/4.0000193","DOIUrl":null,"url":null,"abstract":"<p><p>Intense x-ray pulses can cause the non-thermal structural transformation of diamond. At the SACLA XFEL facility, pump x-ray pulses triggered this phase transition, and probe x-ray pulses produced diffraction patterns. Time delays were observed from 0 to 250 fs, and the x-ray dose varied from 0.9 to 8.0 eV/atom. The intensity of the (111), (220), and (311) diffraction peaks decreased with time, indicating a disordering of the crystal lattice. From a Debye-Waller analysis, the rms atomic displacements perpendicular to the (111) planes were observed to be significantly larger than those perpendicular to the (220) or (311) planes. At a long time delay of 33 ms, graphite (002) diffraction indicates that graphitization did occur above a threshold dose of 1.2 eV/atom. These experimental results are in qualitative agreement with XTANT+ simulations using a hybrid model based on density-functional tight-binding molecular dynamics.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"10 5","pages":"054502"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613085/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-thermal structural transformation of diamond driven by x-rays.\",\"authors\":\"Philip Heimann, Nicholas J Hartley, Ichiro Inoue, Victor Tkachenko, Andre Antoine, Fabien Dorchies, Roger Falcone, Jérôme Gaudin, Hauke Höppner, Yuichi Inubushi, Konrad J Kapcia, Hae Ja Lee, Vladimir Lipp, Paloma Martinez, Nikita Medvedev, Franz Tavella, Sven Toleikis, Makina Yabashi, Toshinori Yabuuchi, Jumpei Yamada, Beata Ziaja\",\"doi\":\"10.1063/4.0000193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intense x-ray pulses can cause the non-thermal structural transformation of diamond. At the SACLA XFEL facility, pump x-ray pulses triggered this phase transition, and probe x-ray pulses produced diffraction patterns. Time delays were observed from 0 to 250 fs, and the x-ray dose varied from 0.9 to 8.0 eV/atom. The intensity of the (111), (220), and (311) diffraction peaks decreased with time, indicating a disordering of the crystal lattice. From a Debye-Waller analysis, the rms atomic displacements perpendicular to the (111) planes were observed to be significantly larger than those perpendicular to the (220) or (311) planes. At a long time delay of 33 ms, graphite (002) diffraction indicates that graphitization did occur above a threshold dose of 1.2 eV/atom. These experimental results are in qualitative agreement with XTANT+ simulations using a hybrid model based on density-functional tight-binding molecular dynamics.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"10 5\",\"pages\":\"054502\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613085/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000193\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000193","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Non-thermal structural transformation of diamond driven by x-rays.
Intense x-ray pulses can cause the non-thermal structural transformation of diamond. At the SACLA XFEL facility, pump x-ray pulses triggered this phase transition, and probe x-ray pulses produced diffraction patterns. Time delays were observed from 0 to 250 fs, and the x-ray dose varied from 0.9 to 8.0 eV/atom. The intensity of the (111), (220), and (311) diffraction peaks decreased with time, indicating a disordering of the crystal lattice. From a Debye-Waller analysis, the rms atomic displacements perpendicular to the (111) planes were observed to be significantly larger than those perpendicular to the (220) or (311) planes. At a long time delay of 33 ms, graphite (002) diffraction indicates that graphitization did occur above a threshold dose of 1.2 eV/atom. These experimental results are in qualitative agreement with XTANT+ simulations using a hybrid model based on density-functional tight-binding molecular dynamics.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.