Fan Liu, Kai Qiao, Wei Meng, Jia Liu, Yiyun Gao and Jianrong Zhu*,
{"title":"好氧颗粒污泥中嗜麦芽窄食单胞菌AGS-1基因敲除CRISPR干扰系统的构建。","authors":"Fan Liu, Kai Qiao, Wei Meng, Jia Liu, Yiyun Gao and Jianrong Zhu*, ","doi":"10.1021/acssynbio.3c00480","DOIUrl":null,"url":null,"abstract":"To identify the function of attachment genes involved in biofilm formation in Stenotrophomonas maltophilia AGS-1 isolated from aerobic granular sludge, an effective gene molecular tool is needed. We developed a two-plasmid CRISPRi system in Stenotrophomonas maltophilia AGS-1. One plasmid expressed dCas9 protein with the l-arabinose inducible promoter, and the other plasmid contained the sgRNA cassette complementary to the target gene. Under control of the araC-inducible promoter, this system exhibited little leaky basal expression and highly induced expression that silenced endogenous and exogenous genes with reversible knockdown. This system achieved up to 211-fold suppression for mCherry expression on the nontemplate strand compared to the template strand (91-fold). The utility of the developed CRISPRi platform was also characterized by suppressing the xanA and rpfF genes. The expression of these two genes was rapidly depleted and the adhesion ability decreased, which demonstrated that the modulation of either gene was an important factor for biofilm formation of the AGS-1 strain. The system also tested the ability to simultaneously silence transcriptional suppression of multiple targeted genes, an entire operon, or part of it. Lastly, the use of CRISPRi allowed us to dissect the gene intricacies involved in flagellar biosynthesis. Collectively, these results demonstrated that the CRISPRi system was a simple, feasible, and controllable manipulation system of gene expression in the AGS-1 strain.","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"12 11","pages":"3497–3504"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a CRISPR Interference System for Gene Knockdown in Stenotrophomonas maltophilia AGS-1 from Aerobic Granular Sludge\",\"authors\":\"Fan Liu, Kai Qiao, Wei Meng, Jia Liu, Yiyun Gao and Jianrong Zhu*, \",\"doi\":\"10.1021/acssynbio.3c00480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To identify the function of attachment genes involved in biofilm formation in Stenotrophomonas maltophilia AGS-1 isolated from aerobic granular sludge, an effective gene molecular tool is needed. We developed a two-plasmid CRISPRi system in Stenotrophomonas maltophilia AGS-1. One plasmid expressed dCas9 protein with the l-arabinose inducible promoter, and the other plasmid contained the sgRNA cassette complementary to the target gene. Under control of the araC-inducible promoter, this system exhibited little leaky basal expression and highly induced expression that silenced endogenous and exogenous genes with reversible knockdown. This system achieved up to 211-fold suppression for mCherry expression on the nontemplate strand compared to the template strand (91-fold). The utility of the developed CRISPRi platform was also characterized by suppressing the xanA and rpfF genes. The expression of these two genes was rapidly depleted and the adhesion ability decreased, which demonstrated that the modulation of either gene was an important factor for biofilm formation of the AGS-1 strain. The system also tested the ability to simultaneously silence transcriptional suppression of multiple targeted genes, an entire operon, or part of it. Lastly, the use of CRISPRi allowed us to dissect the gene intricacies involved in flagellar biosynthesis. Collectively, these results demonstrated that the CRISPRi system was a simple, feasible, and controllable manipulation system of gene expression in the AGS-1 strain.\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"12 11\",\"pages\":\"3497–3504\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.3c00480\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.3c00480","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Construction of a CRISPR Interference System for Gene Knockdown in Stenotrophomonas maltophilia AGS-1 from Aerobic Granular Sludge
To identify the function of attachment genes involved in biofilm formation in Stenotrophomonas maltophilia AGS-1 isolated from aerobic granular sludge, an effective gene molecular tool is needed. We developed a two-plasmid CRISPRi system in Stenotrophomonas maltophilia AGS-1. One plasmid expressed dCas9 protein with the l-arabinose inducible promoter, and the other plasmid contained the sgRNA cassette complementary to the target gene. Under control of the araC-inducible promoter, this system exhibited little leaky basal expression and highly induced expression that silenced endogenous and exogenous genes with reversible knockdown. This system achieved up to 211-fold suppression for mCherry expression on the nontemplate strand compared to the template strand (91-fold). The utility of the developed CRISPRi platform was also characterized by suppressing the xanA and rpfF genes. The expression of these two genes was rapidly depleted and the adhesion ability decreased, which demonstrated that the modulation of either gene was an important factor for biofilm formation of the AGS-1 strain. The system also tested the ability to simultaneously silence transcriptional suppression of multiple targeted genes, an entire operon, or part of it. Lastly, the use of CRISPRi allowed us to dissect the gene intricacies involved in flagellar biosynthesis. Collectively, these results demonstrated that the CRISPRi system was a simple, feasible, and controllable manipulation system of gene expression in the AGS-1 strain.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.