A. Molodyk, A. Markelov, A. Valikov, V. Chepikov, A. Petrzhik, B. Massalimov, P. Degtyarenko, R. Uzkih, A. Soldatenko, K. Sim, Soon Hwang
{"title":"通过沉积厚度增加的高温超导层,获得了工程电流密度增强的2G高温超导丝","authors":"A. Molodyk, A. Markelov, A. Valikov, V. Chepikov, A. Petrzhik, B. Massalimov, P. Degtyarenko, R. Uzkih, A. Soldatenko, K. Sim, Soon Hwang","doi":"10.9714/PSAC.2019.21.4.029","DOIUrl":null,"url":null,"abstract":"2G HTS wire with high engineering current density is desired for applications where compact, high power density superconducting equipment is important. We have succeeded in enhancing engineering current density of commercial SuperOx 2G HTS wire based on GdBCO by increasing the HTS layer thickness without fast degradation of the HTS film microstructure. This was possible after improving the temperature uniformity along the HTS film deposition zone. In particular, the wire engineering current density was increased from 700-770 A/mm (for a 65 μm-thick wire without stabilisation) or 430-480 A/mm (for a 105 μm-thick stabilised wire) at the beginning of this study to almost 1200 A/mm (for a 67 μm-thick wire without stabilisation) or 770 A/mm (for a 107 μm-thick stabilised wire) at completion of this study.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"90 1","pages":"29-33"},"PeriodicalIF":0.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"2G HTS wire with enhanced engineering current density attained through the deposition of HTS layer with increased thickness\",\"authors\":\"A. Molodyk, A. Markelov, A. Valikov, V. Chepikov, A. Petrzhik, B. Massalimov, P. Degtyarenko, R. Uzkih, A. Soldatenko, K. Sim, Soon Hwang\",\"doi\":\"10.9714/PSAC.2019.21.4.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2G HTS wire with high engineering current density is desired for applications where compact, high power density superconducting equipment is important. We have succeeded in enhancing engineering current density of commercial SuperOx 2G HTS wire based on GdBCO by increasing the HTS layer thickness without fast degradation of the HTS film microstructure. This was possible after improving the temperature uniformity along the HTS film deposition zone. In particular, the wire engineering current density was increased from 700-770 A/mm (for a 65 μm-thick wire without stabilisation) or 430-480 A/mm (for a 105 μm-thick stabilised wire) at the beginning of this study to almost 1200 A/mm (for a 67 μm-thick wire without stabilisation) or 770 A/mm (for a 107 μm-thick stabilised wire) at completion of this study.\",\"PeriodicalId\":20758,\"journal\":{\"name\":\"Progress in Superconductivity and Cryogenics\",\"volume\":\"90 1\",\"pages\":\"29-33\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Superconductivity and Cryogenics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9714/PSAC.2019.21.4.029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Superconductivity and Cryogenics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9714/PSAC.2019.21.4.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
2G HTS wire with enhanced engineering current density attained through the deposition of HTS layer with increased thickness
2G HTS wire with high engineering current density is desired for applications where compact, high power density superconducting equipment is important. We have succeeded in enhancing engineering current density of commercial SuperOx 2G HTS wire based on GdBCO by increasing the HTS layer thickness without fast degradation of the HTS film microstructure. This was possible after improving the temperature uniformity along the HTS film deposition zone. In particular, the wire engineering current density was increased from 700-770 A/mm (for a 65 μm-thick wire without stabilisation) or 430-480 A/mm (for a 105 μm-thick stabilised wire) at the beginning of this study to almost 1200 A/mm (for a 67 μm-thick wire without stabilisation) or 770 A/mm (for a 107 μm-thick stabilised wire) at completion of this study.
期刊介绍:
Progress in Superconductivity and Cryogenics is the official publication of The Korea Institute of Applied Superconductivity and Cryogenics and the Korean Superconductivity Society. It was launched in 1999, and accepts original research articles and review papers on research on superconductivity and related fields of physics, electronic devices, materials science, large-scale applications for magnets, power and energy, and cryogenics. The Journal is published quarterly in March, June, September, and December each year. Supplemental issues are published occasionally. The official title of the journal is ''Progress in Superconductivity and Cryogenics'' and the abbreviated title is ''Prog. Supercond. Cryog.'' All submitted manuscripts are peer-reviewed by two reviewers. The text must be written in English. All the articles in this journal are KCI and SCOPUS as of 2015. The URL address of the journal is http://psac.kisac.org where full text is available. This work was supported by the Korean Federation of Science and Technology Societies grant funded by the Korea government.