{"title":"电感电压CDA+MIK补偿的KSTAR CS线圈猝灭检测研究","authors":"S. An, Jinsub Kim, T. Ko, Y. Chu","doi":"10.9714/PSAC.2016.18.1.055","DOIUrl":null,"url":null,"abstract":"Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"55-58"},"PeriodicalIF":0.2000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages\",\"authors\":\"S. An, Jinsub Kim, T. Ko, Y. Chu\",\"doi\":\"10.9714/PSAC.2016.18.1.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.\",\"PeriodicalId\":20758,\"journal\":{\"name\":\"Progress in Superconductivity and Cryogenics\",\"volume\":\"18 1\",\"pages\":\"55-58\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Superconductivity and Cryogenics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9714/PSAC.2016.18.1.055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Superconductivity and Cryogenics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9714/PSAC.2016.18.1.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Study on quench detection of the KSTAR CS coil with CDA+MIK compensation of inductive voltages
Quench Detection System (QDS) is essential to guarantee the stable operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) Poloidal Field (PF) magnet system because the stored energy in the magnet system is very large. For the fast response, voltage-based QDS has been used. Co-wound voltage sensors and balanced bridge circuits were applied to eliminate the inductive voltages generated during the plasma operation. However, as the inductive voltages are hundreds times higher than the quench detection voltage during the pulse-current operation, Central Difference Averaging (CDA) and MIK, where I and K stand for mutual coupling indexes of different circuits, which is an active cancellation of mutually generated voltages have been suggested and studied. In this paper, the CDA and MIK technique were applied to the KSTAR magnet for PF magnet quench detection. The calculated inductive voltages from the MIK and measured voltages from the CDA circuits were compared to eliminate the inductive voltages at result signals.
期刊介绍:
Progress in Superconductivity and Cryogenics is the official publication of The Korea Institute of Applied Superconductivity and Cryogenics and the Korean Superconductivity Society. It was launched in 1999, and accepts original research articles and review papers on research on superconductivity and related fields of physics, electronic devices, materials science, large-scale applications for magnets, power and energy, and cryogenics. The Journal is published quarterly in March, June, September, and December each year. Supplemental issues are published occasionally. The official title of the journal is ''Progress in Superconductivity and Cryogenics'' and the abbreviated title is ''Prog. Supercond. Cryog.'' All submitted manuscripts are peer-reviewed by two reviewers. The text must be written in English. All the articles in this journal are KCI and SCOPUS as of 2015. The URL address of the journal is http://psac.kisac.org where full text is available. This work was supported by the Korean Federation of Science and Technology Societies grant funded by the Korea government.