具有轴向均匀性的空芯螺线管混合设计方法

IF 0.2 Q4 PHYSICS, APPLIED
Li Huang, Sangjin Lee, Sukjin Choi
{"title":"具有轴向均匀性的空芯螺线管混合设计方法","authors":"Li Huang, Sangjin Lee, Sukjin Choi","doi":"10.9714/PSAC.2016.18.1.050","DOIUrl":null,"url":null,"abstract":"In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).","PeriodicalId":20758,"journal":{"name":"Progress in Superconductivity and Cryogenics","volume":"18 1","pages":"50-54"},"PeriodicalIF":0.2000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid design method for air-core solenoid with axial homogeneity\",\"authors\":\"Li Huang, Sangjin Lee, Sukjin Choi\",\"doi\":\"10.9714/PSAC.2016.18.1.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).\",\"PeriodicalId\":20758,\"journal\":{\"name\":\"Progress in Superconductivity and Cryogenics\",\"volume\":\"18 1\",\"pages\":\"50-54\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Superconductivity and Cryogenics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9714/PSAC.2016.18.1.050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Superconductivity and Cryogenics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9714/PSAC.2016.18.1.050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种采用铌钛(NbTi)超导导线设计6 T轴向均匀磁场的空芯超导电磁系统的混合方法。为了使导线体积最小,采用了线性规划和非线性规划相结合的混合优化方法。将螺线管可行空间划分为若干网格,目标点处的磁场近似为每个网格中心理想电流环产生的磁场之和。利用线性规划方法,用非零电流网格表示可行空间中的全局最优电流分布。此外,非零电流网格簇也给出了可行空间中可能螺线管的数目、形状等信息。将这些可能的螺线管作为初始模型,通过非线性规划得到具有整数层的螺线管的最终实用构型。设计结果表明了该方法的有效性和灵活性。该方法还可用于要求在百万分之几(ppm)内具有高均匀性的磁体设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid design method for air-core solenoid with axial homogeneity
In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
33.30%
发文量
0
期刊介绍: Progress in Superconductivity and Cryogenics is the official publication of The Korea Institute of Applied Superconductivity and Cryogenics and the Korean Superconductivity Society. It was launched in 1999, and accepts original research articles and review papers on research on superconductivity and related fields of physics, electronic devices, materials science, large-scale applications for magnets, power and energy, and cryogenics. The Journal is published quarterly in March, June, September, and December each year. Supplemental issues are published occasionally. The official title of the journal is ''Progress in Superconductivity and Cryogenics'' and the abbreviated title is ''Prog. Supercond. Cryog.'' All submitted manuscripts are peer-reviewed by two reviewers. The text must be written in English. All the articles in this journal are KCI and SCOPUS as of 2015. The URL address of the journal is http://psac.kisac.org where full text is available. This work was supported by the Korean Federation of Science and Technology Societies grant funded by the Korea government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信