{"title":"利用Landsat 8和6S对KOMPSAT-3交叉校准/验证精度的评估","authors":"Cheonggil Jin, Chuluong Choi","doi":"10.7780/KJRS.2021.37.1.10","DOIUrl":null,"url":null,"abstract":"In this study, we performed cross calibration of KOMPSAT-3 AEISS imaging sensor with reference to normalized pixels in the Landsat 8 OLI scenes of homogenous ROI recorded by both sensors between January 2014 and December 2019 at the Libya 4 PICS. Cross calibration is using images from a stable and well-calibrated satellite sensor as references to harmonize measurements from other sensors and/or characterize other sensors. But cross calibration has two problems; RSR and temporal difference. The RSR of KOMPSAT-3 and Landsat 8 are similar at the blue and green bands. But the red and NIR bands have a large difference. So we calculate SBAF of each sensor. We compared the SBAF estimated from the TOA Radiance simulation with KOMPSAT-3 and Landsat 8, the results displayed a difference of about 2.07~2.92% and 0.96~1.21% in the VIS and NIR bands. Before SBAF, Reflectance and Radiance difference was 0.42~23.23%. Case of difference temporal, we simulated by 6S and Landsat 8 for alignment the same acquisition time. The SBAF-corrected cross calibration coefficients using KOMPSAT-3, 6S and simulated Landsat 8 compared to the initial cross calibration without correction demonstrated a percentage difference in the spectral bands of about 0.866~1.192%. KOMPSAT-3 maximum uncertainty was estimated at 3.26~3.89%; errors due to atmospheric condition minimized to less than 1% (via 6S); Maximum deviation of KOMPSAT-3 DN was less than 1%. As the result, the results affirm that SBAF and 6s simulation enhanced cross-calibration accuracy.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":"37 1","pages":"123-137"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Assessment of Cross Calibration/Validation Accuracy for KOMPSAT-3 Using Landsat 8 and 6S\",\"authors\":\"Cheonggil Jin, Chuluong Choi\",\"doi\":\"10.7780/KJRS.2021.37.1.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we performed cross calibration of KOMPSAT-3 AEISS imaging sensor with reference to normalized pixels in the Landsat 8 OLI scenes of homogenous ROI recorded by both sensors between January 2014 and December 2019 at the Libya 4 PICS. Cross calibration is using images from a stable and well-calibrated satellite sensor as references to harmonize measurements from other sensors and/or characterize other sensors. But cross calibration has two problems; RSR and temporal difference. The RSR of KOMPSAT-3 and Landsat 8 are similar at the blue and green bands. But the red and NIR bands have a large difference. So we calculate SBAF of each sensor. We compared the SBAF estimated from the TOA Radiance simulation with KOMPSAT-3 and Landsat 8, the results displayed a difference of about 2.07~2.92% and 0.96~1.21% in the VIS and NIR bands. Before SBAF, Reflectance and Radiance difference was 0.42~23.23%. Case of difference temporal, we simulated by 6S and Landsat 8 for alignment the same acquisition time. The SBAF-corrected cross calibration coefficients using KOMPSAT-3, 6S and simulated Landsat 8 compared to the initial cross calibration without correction demonstrated a percentage difference in the spectral bands of about 0.866~1.192%. KOMPSAT-3 maximum uncertainty was estimated at 3.26~3.89%; errors due to atmospheric condition minimized to less than 1% (via 6S); Maximum deviation of KOMPSAT-3 DN was less than 1%. As the result, the results affirm that SBAF and 6s simulation enhanced cross-calibration accuracy.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\"37 1\",\"pages\":\"123-137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.7780/KJRS.2021.37.1.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.7780/KJRS.2021.37.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Assessment of Cross Calibration/Validation Accuracy for KOMPSAT-3 Using Landsat 8 and 6S
In this study, we performed cross calibration of KOMPSAT-3 AEISS imaging sensor with reference to normalized pixels in the Landsat 8 OLI scenes of homogenous ROI recorded by both sensors between January 2014 and December 2019 at the Libya 4 PICS. Cross calibration is using images from a stable and well-calibrated satellite sensor as references to harmonize measurements from other sensors and/or characterize other sensors. But cross calibration has two problems; RSR and temporal difference. The RSR of KOMPSAT-3 and Landsat 8 are similar at the blue and green bands. But the red and NIR bands have a large difference. So we calculate SBAF of each sensor. We compared the SBAF estimated from the TOA Radiance simulation with KOMPSAT-3 and Landsat 8, the results displayed a difference of about 2.07~2.92% and 0.96~1.21% in the VIS and NIR bands. Before SBAF, Reflectance and Radiance difference was 0.42~23.23%. Case of difference temporal, we simulated by 6S and Landsat 8 for alignment the same acquisition time. The SBAF-corrected cross calibration coefficients using KOMPSAT-3, 6S and simulated Landsat 8 compared to the initial cross calibration without correction demonstrated a percentage difference in the spectral bands of about 0.866~1.192%. KOMPSAT-3 maximum uncertainty was estimated at 3.26~3.89%; errors due to atmospheric condition minimized to less than 1% (via 6S); Maximum deviation of KOMPSAT-3 DN was less than 1%. As the result, the results affirm that SBAF and 6s simulation enhanced cross-calibration accuracy.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.