甲基铵铝明矾介电常数和损耗正切的温度依赖性

Pub Date : 2016-03-22 DOI:10.7598/cst2016.1206
A. Rawat
{"title":"甲基铵铝明矾介电常数和损耗正切的温度依赖性","authors":"A. Rawat","doi":"10.7598/cst2016.1206","DOIUrl":null,"url":null,"abstract":"A model of pseudospin-lattice coupled mode for methyl ammonium aluminium alum (MASD) has been modified to include cubic and quartic phonon anharmonic interactions. With the help of double-time temperature dependent Green’s function method and modified Hamiltonian, expressions for soft mode frequency, dielectric constant and loss tangent have been evaluated. By fitting model values of physical quantities in the theoretical expressions, temperature dependence of soft mode frequency, dielectric constant and loss tangent have been obtained and compared with experimental results of Pepinsky et al. 15 , which show a good agreement.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependence of dielectric constant and loss tangent in methyl ammonium aluminium alum\",\"authors\":\"A. Rawat\",\"doi\":\"10.7598/cst2016.1206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model of pseudospin-lattice coupled mode for methyl ammonium aluminium alum (MASD) has been modified to include cubic and quartic phonon anharmonic interactions. With the help of double-time temperature dependent Green’s function method and modified Hamiltonian, expressions for soft mode frequency, dielectric constant and loss tangent have been evaluated. By fitting model values of physical quantities in the theoretical expressions, temperature dependence of soft mode frequency, dielectric constant and loss tangent have been obtained and compared with experimental results of Pepinsky et al. 15 , which show a good agreement.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7598/cst2016.1206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7598/cst2016.1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

修正了甲基铵铝明矾(MASD)的赝自旋-晶格耦合模式模型,使其包含立方和四次声子非调和相互作用。利用双时间温度相关格林函数法和修正哈密顿量,求出了软模频率、介电常数和损耗正切的表达式。通过拟合理论表达式中物理量的模型值,得到了软模频率、介电常数和损耗正切与温度的依赖关系,并与Pepinsky et al. 15的实验结果进行了比较,结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Temperature dependence of dielectric constant and loss tangent in methyl ammonium aluminium alum
A model of pseudospin-lattice coupled mode for methyl ammonium aluminium alum (MASD) has been modified to include cubic and quartic phonon anharmonic interactions. With the help of double-time temperature dependent Green’s function method and modified Hamiltonian, expressions for soft mode frequency, dielectric constant and loss tangent have been evaluated. By fitting model values of physical quantities in the theoretical expressions, temperature dependence of soft mode frequency, dielectric constant and loss tangent have been obtained and compared with experimental results of Pepinsky et al. 15 , which show a good agreement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信