{"title":"对流速度对水中热敏电阻的影响","authors":"S. Domen","doi":"10.6028/jres.093.152","DOIUrl":null,"url":null,"abstract":"Electrical powers from 5 to 150 μW were dissipated in a thermistor, causing it to rise to equilibrium temperatures above the stagnant surrounding water. Natural convection was then simulated by forced convection of water flowing up or down at known rates from 1.3 to 17 mm/min. The disturbances of the equilibrium temperatures were measured, and are presented as effects of equivalent absorbed dose and absorbed dose rates, positive and “negative.”","PeriodicalId":17082,"journal":{"name":"Journal of research of the National Bureau of Standards","volume":"93 1","pages":"603 - 612"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Convective Velocity Effects on a Thermistor in Water\",\"authors\":\"S. Domen\",\"doi\":\"10.6028/jres.093.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical powers from 5 to 150 μW were dissipated in a thermistor, causing it to rise to equilibrium temperatures above the stagnant surrounding water. Natural convection was then simulated by forced convection of water flowing up or down at known rates from 1.3 to 17 mm/min. The disturbances of the equilibrium temperatures were measured, and are presented as effects of equivalent absorbed dose and absorbed dose rates, positive and “negative.”\",\"PeriodicalId\":17082,\"journal\":{\"name\":\"Journal of research of the National Bureau of Standards\",\"volume\":\"93 1\",\"pages\":\"603 - 612\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research of the National Bureau of Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.093.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.093.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convective Velocity Effects on a Thermistor in Water
Electrical powers from 5 to 150 μW were dissipated in a thermistor, causing it to rise to equilibrium temperatures above the stagnant surrounding water. Natural convection was then simulated by forced convection of water flowing up or down at known rates from 1.3 to 17 mm/min. The disturbances of the equilibrium temperatures were measured, and are presented as effects of equivalent absorbed dose and absorbed dose rates, positive and “negative.”