高分辨率非线性激光光谱学

J. C. Wright
{"title":"高分辨率非线性激光光谱学","authors":"J. C. Wright","doi":"10.6028/jres.093.110","DOIUrl":null,"url":null,"abstract":"High resolution laser techniques were developed that address the problems listed above. The techniques are collectively called site selective laser spectroscopy. They relied upon the idea that a narrow band laser could be tuned to excite selectively an absorption line of a specific component or site within a sample so the resulting fluorescence spectrum came only from the site or component excited. One could simplify spectral congestion with this approach. One could also eliminate broadening that was caused by inhomogeneities in the samples because excitation within a broadened line would only excite components that had energy states resonant with the laser so the resulting fluorescence spectrum would not reflect the inhomogeneities. These methods were applied to matrix isolation, low temperature organic glasses, Shpol'skii systems, inorganic analysis using precipitates, and supersonic jet spectroscopy to measure a variety of inorganic and organic materials at ultra-trace levels. The methods all relied upon sample fluorescence and they failed if the samples were non-fluorescent. We have recently shown that there is a new family of high resolution laser spectroscopies that have the same capabilities but do not require a fluorescent sample. These spectroscopies are based upon nonlinear mixing where several tunable lasers are focused into a material and new frequencies are formed at all of the sums and differences of the original laser frequencies. This nonlinear mixing is resonantly enhanced when some of the laser combinations match resonances of components in the sample. The nonlinear mixing can be used to perform atomic spectroscopy and molecular spectroscopy. We will concentrate on molecular spectroscopy in this discussion. One can perform component selection by tuning the lasers to match resonances on one specific component in the sample. One would then expect to have that component contribute dominantly to the nonlinear mixing. One can also eliminate inhomogeneous broadening by tuming the lasers to match the resonances of specific sites within the inhomogeneously broadened line. Again, one would expect that those sites would contribute dominantly to the mixing and the nonresonant sites would be discriminated against. We have tested these ideas in several model systems using four wave mixing spectroscopy. The two model systems are pentacene doped into p-terphenyl crystals and pentacene doped into benzoic acid crystals where p-terphenyl was added in small amounts to introduce controlled amounts of inhomogeneous broadening. The experiments were done at 2 K to eliminate thermal effects. There are four schemes that one can use to establish resonances with the pentacene molecules. In all of them, one establishes resonances with the vibrational levels, the excited electronic states, and the vibrational levels of the excited electronic state (which we will call vibronic states). The four schemes differ in which states are involved in the resonance associated with the emitted light. If the emitted light involves transitions between two levels that are not initially populated, the technique is classified as a nonparametric process. If one of the levels were initially populated, the technique is a parametric process. Theories for the ideas predict that each possibility will have a different ability to provide selectivity in the measurement. The pentacene in p-terphenyl system was studied first. Pentacene has four different crystallographic sites in this crystal, some of which differ only slightly from each other. Conventional spectroscopy shows that the transitions from each","PeriodicalId":17082,"journal":{"name":"Journal of research of the National Bureau of Standards","volume":"93 1","pages":"440 - 441"},"PeriodicalIF":0.0000,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"High Resolution Nonlinear Laser Spectroscopy\",\"authors\":\"J. C. Wright\",\"doi\":\"10.6028/jres.093.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High resolution laser techniques were developed that address the problems listed above. The techniques are collectively called site selective laser spectroscopy. They relied upon the idea that a narrow band laser could be tuned to excite selectively an absorption line of a specific component or site within a sample so the resulting fluorescence spectrum came only from the site or component excited. One could simplify spectral congestion with this approach. One could also eliminate broadening that was caused by inhomogeneities in the samples because excitation within a broadened line would only excite components that had energy states resonant with the laser so the resulting fluorescence spectrum would not reflect the inhomogeneities. These methods were applied to matrix isolation, low temperature organic glasses, Shpol'skii systems, inorganic analysis using precipitates, and supersonic jet spectroscopy to measure a variety of inorganic and organic materials at ultra-trace levels. The methods all relied upon sample fluorescence and they failed if the samples were non-fluorescent. We have recently shown that there is a new family of high resolution laser spectroscopies that have the same capabilities but do not require a fluorescent sample. These spectroscopies are based upon nonlinear mixing where several tunable lasers are focused into a material and new frequencies are formed at all of the sums and differences of the original laser frequencies. This nonlinear mixing is resonantly enhanced when some of the laser combinations match resonances of components in the sample. The nonlinear mixing can be used to perform atomic spectroscopy and molecular spectroscopy. We will concentrate on molecular spectroscopy in this discussion. One can perform component selection by tuning the lasers to match resonances on one specific component in the sample. One would then expect to have that component contribute dominantly to the nonlinear mixing. One can also eliminate inhomogeneous broadening by tuming the lasers to match the resonances of specific sites within the inhomogeneously broadened line. Again, one would expect that those sites would contribute dominantly to the mixing and the nonresonant sites would be discriminated against. We have tested these ideas in several model systems using four wave mixing spectroscopy. The two model systems are pentacene doped into p-terphenyl crystals and pentacene doped into benzoic acid crystals where p-terphenyl was added in small amounts to introduce controlled amounts of inhomogeneous broadening. The experiments were done at 2 K to eliminate thermal effects. There are four schemes that one can use to establish resonances with the pentacene molecules. In all of them, one establishes resonances with the vibrational levels, the excited electronic states, and the vibrational levels of the excited electronic state (which we will call vibronic states). The four schemes differ in which states are involved in the resonance associated with the emitted light. If the emitted light involves transitions between two levels that are not initially populated, the technique is classified as a nonparametric process. If one of the levels were initially populated, the technique is a parametric process. Theories for the ideas predict that each possibility will have a different ability to provide selectivity in the measurement. The pentacene in p-terphenyl system was studied first. Pentacene has four different crystallographic sites in this crystal, some of which differ only slightly from each other. Conventional spectroscopy shows that the transitions from each\",\"PeriodicalId\":17082,\"journal\":{\"name\":\"Journal of research of the National Bureau of Standards\",\"volume\":\"93 1\",\"pages\":\"440 - 441\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of research of the National Bureau of Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.093.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.093.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

为解决上述问题,高分辨率激光技术得到了发展。这些技术统称为选择性激光光谱学。他们的想法是,窄带激光可以被调谐,选择性地激发样品中特定成分或部位的吸收线,因此产生的荧光光谱只来自被激发的部位或部位。用这种方法可以简化频谱拥塞。我们还可以消除由样品中的不均匀性引起的展宽,因为在展宽线内的激发只会激发具有与激光共振的能量态的成分,因此产生的荧光光谱不会反映不均匀性。这些方法被应用于基质分离、低温有机玻璃、Shpol’skii体系、沉淀物无机分析和超音速射流光谱,以测量超痕量水平的各种无机和有机材料。这些方法都依赖于样品的荧光,如果样品是非荧光的,它们就失败了。我们最近表明,有一个新的家族的高分辨率激光光谱具有相同的能力,但不需要荧光样品。这些光谱是基于非线性混合的,其中几个可调谐激光聚焦到材料中,在原始激光频率的和和差处形成新的频率。当某些激光组合与样品中元件的共振相匹配时,这种非线性混合会共振增强。非线性混合可以用于原子光谱和分子光谱。在这次讨论中,我们将集中讨论分子光谱学。可以通过调整激光器以匹配样品中特定组件的共振来进行组件选择。人们会期望该分量对非线性混合起主要作用。我们也可以消除不均匀的加宽,通过旋转激光以匹配不均匀加宽线内特定位置的共振。再一次,人们会期望这些位置会对混合起主要作用,而非共振的位置会受到歧视。我们已经用四波混频光谱在几个模型系统中测试了这些想法。这两种模型体系分别是将并五苯掺杂到对terphenyl晶体和将并五苯掺杂到苯甲酸晶体中,其中少量加入对terphenyl以引入受控量的不均匀展宽。为了消除热效应,实验在2k下进行。有四种方案可以用来建立与并五苯分子的共振。在所有这些中,我们都建立了振动能级,激发态,激发态的振动能级(我们称之为振动态)的共振。这四种方案的不同之处在于与发射光相关的共振所涉及的状态。如果发射的光涉及两个初始未填充的能级之间的转换,则该技术被归类为非参数过程。如果其中一个级别最初被填充,则该技术是一个参数化过程。理论预测,每种可能性在测量中都有不同的选择性能力。首先研究了对三苯体系中的并戊烯。并五苯在这个晶体中有四个不同的晶体位置,其中一些彼此之间只有轻微的区别。常规光谱学表明,从每一个跃迁
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Resolution Nonlinear Laser Spectroscopy
High resolution laser techniques were developed that address the problems listed above. The techniques are collectively called site selective laser spectroscopy. They relied upon the idea that a narrow band laser could be tuned to excite selectively an absorption line of a specific component or site within a sample so the resulting fluorescence spectrum came only from the site or component excited. One could simplify spectral congestion with this approach. One could also eliminate broadening that was caused by inhomogeneities in the samples because excitation within a broadened line would only excite components that had energy states resonant with the laser so the resulting fluorescence spectrum would not reflect the inhomogeneities. These methods were applied to matrix isolation, low temperature organic glasses, Shpol'skii systems, inorganic analysis using precipitates, and supersonic jet spectroscopy to measure a variety of inorganic and organic materials at ultra-trace levels. The methods all relied upon sample fluorescence and they failed if the samples were non-fluorescent. We have recently shown that there is a new family of high resolution laser spectroscopies that have the same capabilities but do not require a fluorescent sample. These spectroscopies are based upon nonlinear mixing where several tunable lasers are focused into a material and new frequencies are formed at all of the sums and differences of the original laser frequencies. This nonlinear mixing is resonantly enhanced when some of the laser combinations match resonances of components in the sample. The nonlinear mixing can be used to perform atomic spectroscopy and molecular spectroscopy. We will concentrate on molecular spectroscopy in this discussion. One can perform component selection by tuning the lasers to match resonances on one specific component in the sample. One would then expect to have that component contribute dominantly to the nonlinear mixing. One can also eliminate inhomogeneous broadening by tuming the lasers to match the resonances of specific sites within the inhomogeneously broadened line. Again, one would expect that those sites would contribute dominantly to the mixing and the nonresonant sites would be discriminated against. We have tested these ideas in several model systems using four wave mixing spectroscopy. The two model systems are pentacene doped into p-terphenyl crystals and pentacene doped into benzoic acid crystals where p-terphenyl was added in small amounts to introduce controlled amounts of inhomogeneous broadening. The experiments were done at 2 K to eliminate thermal effects. There are four schemes that one can use to establish resonances with the pentacene molecules. In all of them, one establishes resonances with the vibrational levels, the excited electronic states, and the vibrational levels of the excited electronic state (which we will call vibronic states). The four schemes differ in which states are involved in the resonance associated with the emitted light. If the emitted light involves transitions between two levels that are not initially populated, the technique is classified as a nonparametric process. If one of the levels were initially populated, the technique is a parametric process. Theories for the ideas predict that each possibility will have a different ability to provide selectivity in the measurement. The pentacene in p-terphenyl system was studied first. Pentacene has four different crystallographic sites in this crystal, some of which differ only slightly from each other. Conventional spectroscopy shows that the transitions from each
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信