{"title":"L(Z2) × SL2(Z)中的极大Haagerup子代数","authors":"Yongle Jiang","doi":"10.7900/jot.2020mar09.2282","DOIUrl":null,"url":null,"abstract":"We prove that L(SL2(k)) is a maximal Haagerup--von Neumann subalgebra in L(k2⋊SL2(k)) for k=Q and k=Z. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between L(SL2(k)) and L∞(Y)⋊SL2(k), where SL2(k)↷Y denotes the quotient of the algebraic action SL2(k)↷ˆk2 by modding out the relation ϕ∼ϕ′, where ϕ, ϕ′∈ˆk2 and ϕ′(x,y):=ϕ(−x,−y) for all (x,y)∈k2. As a by-product, we show L(PSL2(Q)) is a maximal von Neumann subalgebra in L∞(Y)⋊PSL2(Q); in particular, PSL2(Q)↷Y is a prime action.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Maximal Haagerup subalgebras in L(Z2⋊SL2(Z))\",\"authors\":\"Yongle Jiang\",\"doi\":\"10.7900/jot.2020mar09.2282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that L(SL2(k)) is a maximal Haagerup--von Neumann subalgebra in L(k2⋊SL2(k)) for k=Q and k=Z. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between L(SL2(k)) and L∞(Y)⋊SL2(k), where SL2(k)↷Y denotes the quotient of the algebraic action SL2(k)↷ˆk2 by modding out the relation ϕ∼ϕ′, where ϕ, ϕ′∈ˆk2 and ϕ′(x,y):=ϕ(−x,−y) for all (x,y)∈k2. As a by-product, we show L(PSL2(Q)) is a maximal von Neumann subalgebra in L∞(Y)⋊PSL2(Q); in particular, PSL2(Q)↷Y is a prime action.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020mar09.2282\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020mar09.2282","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that L(SL2(k)) is a maximal Haagerup--von Neumann subalgebra in L(k2⋊SL2(k)) for k=Q and k=Z. The key step for the proof is a complete description of all intermediate von Neumann subalgebras between L(SL2(k)) and L∞(Y)⋊SL2(k), where SL2(k)↷Y denotes the quotient of the algebraic action SL2(k)↷ˆk2 by modding out the relation ϕ∼ϕ′, where ϕ, ϕ′∈ˆk2 and ϕ′(x,y):=ϕ(−x,−y) for all (x,y)∈k2. As a by-product, we show L(PSL2(Q)) is a maximal von Neumann subalgebra in L∞(Y)⋊PSL2(Q); in particular, PSL2(Q)↷Y is a prime action.
期刊介绍:
The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.