Banach空间中Carath - odory非凸微分包含的生存性结果

IF 1 Q1 MATHEMATICS
N. Charradi, S. Sajid
{"title":"Banach空间中Carath - odory非凸微分包含的生存性结果","authors":"N. Charradi, S. Sajid","doi":"10.7494/opmath.2023.43.5.621","DOIUrl":null,"url":null,"abstract":"This paper deals with the existence of solutions to the following differential inclusion: \\(\\dot{x}(t)\\in F(t,x(t))\\) a.e. on \\([0, T[\\) and \\(x(t)\\in K\\), for all \\(t \\in [0, T]\\), where \\(F: [0, T]\\times K \\rightarrow 2^E\\) is a Carath�odory multifunction and \\(K\\) is a closed subset of a separable Banach space \\(E\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A viability result for Carath�odory non-convex differential inclusion in Banach spaces\",\"authors\":\"N. Charradi, S. Sajid\",\"doi\":\"10.7494/opmath.2023.43.5.621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the existence of solutions to the following differential inclusion: \\\\(\\\\dot{x}(t)\\\\in F(t,x(t))\\\\) a.e. on \\\\([0, T[\\\\) and \\\\(x(t)\\\\in K\\\\), for all \\\\(t \\\\in [0, T]\\\\), where \\\\(F: [0, T]\\\\times K \\\\rightarrow 2^E\\\\) is a Carath�odory multifunction and \\\\(K\\\\) is a closed subset of a separable Banach space \\\\(E\\\\).\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.5.621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.5.621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了以下微分包含的解的存在性:\(\dot{x}(t)\in F(t,x(t))\) a.e.在\([0, T[\)和\(x(t)\in K\)上,对于所有\(t \in [0, T]\),其中\(F: [0, T]\times K \rightarrow 2^E\)是Carath - odory多函数,\(K\)是可分Banach空间\(E\)的闭子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A viability result for Carath�odory non-convex differential inclusion in Banach spaces
This paper deals with the existence of solutions to the following differential inclusion: \(\dot{x}(t)\in F(t,x(t))\) a.e. on \([0, T[\) and \(x(t)\in K\), for all \(t \in [0, T]\), where \(F: [0, T]\times K \rightarrow 2^E\) is a Carath�odory multifunction and \(K\) is a closed subset of a separable Banach space \(E\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信