{"title":"Banach空间中Carath - odory非凸微分包含的生存性结果","authors":"N. Charradi, S. Sajid","doi":"10.7494/opmath.2023.43.5.621","DOIUrl":null,"url":null,"abstract":"This paper deals with the existence of solutions to the following differential inclusion: \\(\\dot{x}(t)\\in F(t,x(t))\\) a.e. on \\([0, T[\\) and \\(x(t)\\in K\\), for all \\(t \\in [0, T]\\), where \\(F: [0, T]\\times K \\rightarrow 2^E\\) is a Carath�odory multifunction and \\(K\\) is a closed subset of a separable Banach space \\(E\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A viability result for Carath�odory non-convex differential inclusion in Banach spaces\",\"authors\":\"N. Charradi, S. Sajid\",\"doi\":\"10.7494/opmath.2023.43.5.621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the existence of solutions to the following differential inclusion: \\\\(\\\\dot{x}(t)\\\\in F(t,x(t))\\\\) a.e. on \\\\([0, T[\\\\) and \\\\(x(t)\\\\in K\\\\), for all \\\\(t \\\\in [0, T]\\\\), where \\\\(F: [0, T]\\\\times K \\\\rightarrow 2^E\\\\) is a Carath�odory multifunction and \\\\(K\\\\) is a closed subset of a separable Banach space \\\\(E\\\\).\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.5.621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.5.621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A viability result for Carath�odory non-convex differential inclusion in Banach spaces
This paper deals with the existence of solutions to the following differential inclusion: \(\dot{x}(t)\in F(t,x(t))\) a.e. on \([0, T[\) and \(x(t)\in K\), for all \(t \in [0, T]\), where \(F: [0, T]\times K \rightarrow 2^E\) is a Carath�odory multifunction and \(K\) is a closed subset of a separable Banach space \(E\).