各向异性扩散dla簇的Hausdorff维数及标度性质

Pub Date : 1998-09-20 DOI:10.7498/aps.47.1421
Tian Ju-ping, Yao Kai-lun
{"title":"各向异性扩散dla簇的Hausdorff维数及标度性质","authors":"Tian Ju-ping, Yao Kai-lun","doi":"10.7498/aps.47.1421","DOIUrl":null,"url":null,"abstract":"In this paper,the effect of the anisotropy diffusion on the growth of diffusion-limited aggregation(DLA) clusters is discussed.Our computer simulation results verify that DLA clusters grown with anisotropic diffusion rules have a striking overall diamond shape.A new anisotropic diffusion equation of particles is derived.The Hausdorff dimension of a two-dimensional DLA cluster in the anisotropic diffusion is calculated.The results show that the effective angle β eff =min(β ix ,β iy ).In addition,the generalized dimension D q of the anisotropic diffusion DLA is also discussed and an expression of the generalized dimension D q is obtained using the modified wedge model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1998-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HAUSDORFF DIMENSION AND SCALING NATURE OF ANISOTROPY DIFFUSION DLA CLUSTER\",\"authors\":\"Tian Ju-ping, Yao Kai-lun\",\"doi\":\"10.7498/aps.47.1421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper,the effect of the anisotropy diffusion on the growth of diffusion-limited aggregation(DLA) clusters is discussed.Our computer simulation results verify that DLA clusters grown with anisotropic diffusion rules have a striking overall diamond shape.A new anisotropic diffusion equation of particles is derived.The Hausdorff dimension of a two-dimensional DLA cluster in the anisotropic diffusion is calculated.The results show that the effective angle β eff =min(β ix ,β iy ).In addition,the generalized dimension D q of the anisotropic diffusion DLA is also discussed and an expression of the generalized dimension D q is obtained using the modified wedge model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"1998-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.47.1421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.47.1421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了各向异性扩散对扩散限制聚集(DLA)团簇生长的影响。我们的计算机模拟结果验证了在各向异性扩散规则下生长的聚乳酸簇具有显著的整体菱形。导出了一个新的粒子各向异性扩散方程。计算了二维DLA簇在各向异性扩散中的Hausdorff维数。结果表明:有效角β eff =min(β ix,β iy)。此外,还讨论了各向异性扩散DLA的广义维数dq,并利用修正的楔形模型得到了广义维数dq的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
HAUSDORFF DIMENSION AND SCALING NATURE OF ANISOTROPY DIFFUSION DLA CLUSTER
In this paper,the effect of the anisotropy diffusion on the growth of diffusion-limited aggregation(DLA) clusters is discussed.Our computer simulation results verify that DLA clusters grown with anisotropic diffusion rules have a striking overall diamond shape.A new anisotropic diffusion equation of particles is derived.The Hausdorff dimension of a two-dimensional DLA cluster in the anisotropic diffusion is calculated.The results show that the effective angle β eff =min(β ix ,β iy ).In addition,the generalized dimension D q of the anisotropic diffusion DLA is also discussed and an expression of the generalized dimension D q is obtained using the modified wedge model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信