{"title":"具有基本有界权值的p-拉普拉斯算子的Neumann边界问题的第一特征曲线","authors":"Ahmed Sanhaji, A. Dakkak, M. Moussaoui","doi":"10.7494/opmath.2023.43.4.559","DOIUrl":null,"url":null,"abstract":"This article is intended to prove the existence and uniqueness of the first eigencurve, for a homogeneous Neumann problem with singular weights associated with the equation \\[-\\Delta_{p} u=\\alpha m_{1}|u|^{p-2}u+\\beta m_{2}|u|^{p-2}u\\] in a bounded domain \\(\\Omega \\subset \\mathbb{R}^{N}\\). We then establish many properties of this eigencurve, particularly the continuity, variational characterization, asymptotic behavior, concavity and the differentiability.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The first eigencurve for a Neumann boundary problem involving p-Laplacian with essentially bounded weights\",\"authors\":\"Ahmed Sanhaji, A. Dakkak, M. Moussaoui\",\"doi\":\"10.7494/opmath.2023.43.4.559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is intended to prove the existence and uniqueness of the first eigencurve, for a homogeneous Neumann problem with singular weights associated with the equation \\\\[-\\\\Delta_{p} u=\\\\alpha m_{1}|u|^{p-2}u+\\\\beta m_{2}|u|^{p-2}u\\\\] in a bounded domain \\\\(\\\\Omega \\\\subset \\\\mathbb{R}^{N}\\\\). We then establish many properties of this eigencurve, particularly the continuity, variational characterization, asymptotic behavior, concavity and the differentiability.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.4.559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.4.559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The first eigencurve for a Neumann boundary problem involving p-Laplacian with essentially bounded weights
This article is intended to prove the existence and uniqueness of the first eigencurve, for a homogeneous Neumann problem with singular weights associated with the equation \[-\Delta_{p} u=\alpha m_{1}|u|^{p-2}u+\beta m_{2}|u|^{p-2}u\] in a bounded domain \(\Omega \subset \mathbb{R}^{N}\). We then establish many properties of this eigencurve, particularly the continuity, variational characterization, asymptotic behavior, concavity and the differentiability.