{"title":"半线性常微分方程非振动解的存在性和渐近性","authors":"Manabu Naito","doi":"10.7494/opmath.2023.43.2.221","DOIUrl":null,"url":null,"abstract":"We consider the half-linear differential equation \\[(|x'|^{\\alpha}\\mathrm{sgn}\\,x')' + q(t)|x|^{\\alpha}\\mathrm{sgn}\\,x = 0, \\quad t \\geq t_{0},\\] under the condition \\[\\lim_{t\\to\\infty}t^{\\alpha}\\int_{t}^{\\infty}q(s)ds = \\frac{\\alpha^{\\alpha}}{(\\alpha+1)^{\\alpha+1}}.\\] It is shown that if certain additional conditions are satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \\(t\\to\\infty\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations\",\"authors\":\"Manabu Naito\",\"doi\":\"10.7494/opmath.2023.43.2.221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the half-linear differential equation \\\\[(|x'|^{\\\\alpha}\\\\mathrm{sgn}\\\\,x')' + q(t)|x|^{\\\\alpha}\\\\mathrm{sgn}\\\\,x = 0, \\\\quad t \\\\geq t_{0},\\\\] under the condition \\\\[\\\\lim_{t\\\\to\\\\infty}t^{\\\\alpha}\\\\int_{t}^{\\\\infty}q(s)ds = \\\\frac{\\\\alpha^{\\\\alpha}}{(\\\\alpha+1)^{\\\\alpha+1}}.\\\\] It is shown that if certain additional conditions are satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \\\\(t\\\\to\\\\infty\\\\).\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.2.221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.2.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence and asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations
We consider the half-linear differential equation \[(|x'|^{\alpha}\mathrm{sgn}\,x')' + q(t)|x|^{\alpha}\mathrm{sgn}\,x = 0, \quad t \geq t_{0},\] under the condition \[\lim_{t\to\infty}t^{\alpha}\int_{t}^{\infty}q(s)ds = \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}}.\] It is shown that if certain additional conditions are satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \(t\to\infty\).