轴向区域稳定平流扩散问题的渐近分析

IF 1 Q1 MATHEMATICS
Fernando A. Morales
{"title":"轴向区域稳定平流扩散问题的渐近分析","authors":"Fernando A. Morales","doi":"10.7494/opmath.2023.43.2.199","DOIUrl":null,"url":null,"abstract":"We present the asymptotic analysis of the steady advection-diffusion equation in a thin tube. The problem is modeled in a mixed-type variational formulation, in order to separate the phenomenon in the axial direction and a transverse one. Such formulation makes visible the natural separation of scales within the problem and permits a successful asymptotic analysis, delivering a limiting form, free from the initial geometric singularity and suitable for approximating the original one. Furthermore, it is shown that the limiting problem can be simplified to a significantly simpler structure.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic analysis of the steady advection-diffusion problem in axial domains\",\"authors\":\"Fernando A. Morales\",\"doi\":\"10.7494/opmath.2023.43.2.199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the asymptotic analysis of the steady advection-diffusion equation in a thin tube. The problem is modeled in a mixed-type variational formulation, in order to separate the phenomenon in the axial direction and a transverse one. Such formulation makes visible the natural separation of scales within the problem and permits a successful asymptotic analysis, delivering a limiting form, free from the initial geometric singularity and suitable for approximating the original one. Furthermore, it is shown that the limiting problem can be simplified to a significantly simpler structure.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.2.199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.2.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了薄管内稳定平流扩散方程的渐近分析。为了将轴向现象和横向现象分离开来,用混合变分形式对问题进行建模。这样的公式使问题中尺度的自然分离可见,并允许成功的渐近分析,提供一个极限形式,从初始几何奇点中解脱出来,适合于近似原始奇点。进一步证明了极限问题可以简化为一个更简单的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic analysis of the steady advection-diffusion problem in axial domains
We present the asymptotic analysis of the steady advection-diffusion equation in a thin tube. The problem is modeled in a mixed-type variational formulation, in order to separate the phenomenon in the axial direction and a transverse one. Such formulation makes visible the natural separation of scales within the problem and permits a successful asymptotic analysis, delivering a limiting form, free from the initial geometric singularity and suitable for approximating the original one. Furthermore, it is shown that the limiting problem can be simplified to a significantly simpler structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信