{"title":"截尾数据局部线性相对回归估计量的强相合性","authors":"Feriel Bouhadjera, E. Said","doi":"10.7494/opmath.2022.42.6.805","DOIUrl":null,"url":null,"abstract":"In this paper, we combine the local linear approach to the relative error regression estimation method to build a new estimator of the regression operator when the response variable is subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Numerical studies, firstly on simulated data, then on a real data set concerning the death times of kidney transplant patients, were conducted. These practical studies clearly show the superiority of the new estimator compared to competitive estimators.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong consistency of the local linear relative regression estimator for censored data\",\"authors\":\"Feriel Bouhadjera, E. Said\",\"doi\":\"10.7494/opmath.2022.42.6.805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we combine the local linear approach to the relative error regression estimation method to build a new estimator of the regression operator when the response variable is subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Numerical studies, firstly on simulated data, then on a real data set concerning the death times of kidney transplant patients, were conducted. These practical studies clearly show the superiority of the new estimator compared to competitive estimators.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.6.805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.6.805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Strong consistency of the local linear relative regression estimator for censored data
In this paper, we combine the local linear approach to the relative error regression estimation method to build a new estimator of the regression operator when the response variable is subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Numerical studies, firstly on simulated data, then on a real data set concerning the death times of kidney transplant patients, were conducted. These practical studies clearly show the superiority of the new estimator compared to competitive estimators.