截尾数据局部线性相对回归估计量的强相合性

IF 1 Q1 MATHEMATICS
Feriel Bouhadjera, E. Said
{"title":"截尾数据局部线性相对回归估计量的强相合性","authors":"Feriel Bouhadjera, E. Said","doi":"10.7494/opmath.2022.42.6.805","DOIUrl":null,"url":null,"abstract":"In this paper, we combine the local linear approach to the relative error regression estimation method to build a new estimator of the regression operator when the response variable is subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Numerical studies, firstly on simulated data, then on a real data set concerning the death times of kidney transplant patients, were conducted. These practical studies clearly show the superiority of the new estimator compared to competitive estimators.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong consistency of the local linear relative regression estimator for censored data\",\"authors\":\"Feriel Bouhadjera, E. Said\",\"doi\":\"10.7494/opmath.2022.42.6.805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we combine the local linear approach to the relative error regression estimation method to build a new estimator of the regression operator when the response variable is subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Numerical studies, firstly on simulated data, then on a real data set concerning the death times of kidney transplant patients, were conducted. These practical studies clearly show the superiority of the new estimator compared to competitive estimators.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.6.805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.6.805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将局部线性方法与相对误差回归估计方法相结合,建立了响应变量随机右截时回归算子的新估计。我们在一个紧集上证明了所提估计量与速率的一致几乎肯定的一致性。首先对模拟数据进行了数值研究,然后对肾移植患者死亡时间的真实数据集进行了数值研究。这些实际研究清楚地表明了新估计器与竞争估计器相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong consistency of the local linear relative regression estimator for censored data
In this paper, we combine the local linear approach to the relative error regression estimation method to build a new estimator of the regression operator when the response variable is subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Numerical studies, firstly on simulated data, then on a real data set concerning the death times of kidney transplant patients, were conducted. These practical studies clearly show the superiority of the new estimator compared to competitive estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信