具有非单调参数的一阶线性延迟差分方程振荡的新条件

IF 1 Q1 MATHEMATICS
E. Attia, B. El-Matary, G. Chatzarakis
{"title":"具有非单调参数的一阶线性延迟差分方程振荡的新条件","authors":"E. Attia, B. El-Matary, G. Chatzarakis","doi":"10.7494/opmath.2022.42.6.769","DOIUrl":null,"url":null,"abstract":"In this paper, we study the oscillatory behavior of the solutions of a first-order difference equation with non-monotone retarded argument and nonnegative coefficients, based on an iterative procedure. We establish some oscillation criteria, involving \\(\\lim \\sup\\), which achieve a marked improvement on several known conditions in the literature. Two examples, numerically solved in MAPLE software, are also given to illustrate the applicability and strength of the obtained conditions.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New oscillation conditions for first-order linear retarded difference equations with non-monotone arguments\",\"authors\":\"E. Attia, B. El-Matary, G. Chatzarakis\",\"doi\":\"10.7494/opmath.2022.42.6.769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the oscillatory behavior of the solutions of a first-order difference equation with non-monotone retarded argument and nonnegative coefficients, based on an iterative procedure. We establish some oscillation criteria, involving \\\\(\\\\lim \\\\sup\\\\), which achieve a marked improvement on several known conditions in the literature. Two examples, numerically solved in MAPLE software, are also given to illustrate the applicability and strength of the obtained conditions.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.6.769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.6.769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用迭代法研究了一类非单调延迟参数非负系数一阶差分方程解的振动性。我们建立了一些振荡准则,包括\(\lim \sup\),它在文献中已知的几个条件下取得了显著的改进。用MAPLE软件对两个算例进行了数值求解,说明了所得条件的适用性和强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New oscillation conditions for first-order linear retarded difference equations with non-monotone arguments
In this paper, we study the oscillatory behavior of the solutions of a first-order difference equation with non-monotone retarded argument and nonnegative coefficients, based on an iterative procedure. We establish some oscillation criteria, involving \(\lim \sup\), which achieve a marked improvement on several known conditions in the literature. Two examples, numerically solved in MAPLE software, are also given to illustrate the applicability and strength of the obtained conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信