{"title":"贝塞尔过程的平方根边界和径向Ornstein-Uhlenbeck过程的撞击次数","authors":"Yuji Hamana","doi":"10.7494/opmath.2023.43.2.145","DOIUrl":null,"url":null,"abstract":"This article deals with the first hitting times of a Bessel process to a square-root boundary. We obtain the explicit form of the distribution function of the hitting time by means of zeros of the confluent hypergeometric function with respect to the first parameter. In deducing the distribution function, the time that a radial Ornstein-Uhlenbeck process reaches a certain point is very useful and plays an important role. We also give its distribution function in the case that the starting point is closer to the origin than the arrival site.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Square-root boundaries for Bessel processes and the hitting times of radial Ornstein-Uhlenbeck processes\",\"authors\":\"Yuji Hamana\",\"doi\":\"10.7494/opmath.2023.43.2.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the first hitting times of a Bessel process to a square-root boundary. We obtain the explicit form of the distribution function of the hitting time by means of zeros of the confluent hypergeometric function with respect to the first parameter. In deducing the distribution function, the time that a radial Ornstein-Uhlenbeck process reaches a certain point is very useful and plays an important role. We also give its distribution function in the case that the starting point is closer to the origin than the arrival site.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.2.145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.2.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Square-root boundaries for Bessel processes and the hitting times of radial Ornstein-Uhlenbeck processes
This article deals with the first hitting times of a Bessel process to a square-root boundary. We obtain the explicit form of the distribution function of the hitting time by means of zeros of the confluent hypergeometric function with respect to the first parameter. In deducing the distribution function, the time that a radial Ornstein-Uhlenbeck process reaches a certain point is very useful and plays an important role. We also give its distribution function in the case that the starting point is closer to the origin than the arrival site.