具有单峰项的高阶非线性差分方程的全局吸引性

IF 1 Q1 MATHEMATICS
Abdulaziz Almaslokh, C. Qian
{"title":"具有单峰项的高阶非线性差分方程的全局吸引性","authors":"Abdulaziz Almaslokh, C. Qian","doi":"10.7494/opmath.2023.43.2.131","DOIUrl":null,"url":null,"abstract":"In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \\[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \\quad n=0, 1, \\ldots,\\] where \\(a\\), \\(b\\) and \\(c\\) are constants with \\(0\\lt a\\lt 1\\), \\(0\\leq b\\lt 1\\), \\(0\\leq c \\lt 1\\) and \\(a+b+c=1\\), \\(g\\in C[[0, \\infty), [0, \\infty)]\\) is decreasing, and \\(k\\) is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global attractivity of a higher order nonlinear difference equation with unimodal terms\",\"authors\":\"Abdulaziz Almaslokh, C. Qian\",\"doi\":\"10.7494/opmath.2023.43.2.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \\\\[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \\\\quad n=0, 1, \\\\ldots,\\\\] where \\\\(a\\\\), \\\\(b\\\\) and \\\\(c\\\\) are constants with \\\\(0\\\\lt a\\\\lt 1\\\\), \\\\(0\\\\leq b\\\\lt 1\\\\), \\\\(0\\\\leq c \\\\lt 1\\\\) and \\\\(a+b+c=1\\\\), \\\\(g\\\\in C[[0, \\\\infty), [0, \\\\infty)]\\\\) is decreasing, and \\\\(k\\\\) is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.2.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.2.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了含单峰项\[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \quad n=0, 1, \ldots,\]的高阶非线性差分方程的渐近行为,其中\(a\)、\(b\)和\(c\)为常数,\(0\lt a\lt 1\)、\(0\leq b\lt 1\)、\(0\leq c \lt 1\)和\(a+b+c=1\)、\(g\in C[[0, \infty), [0, \infty)]\)为递减,\(k\)为正整数。得到了该方程正解全局吸引的几个新的充分条件。并给出了在一些人口模型中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global attractivity of a higher order nonlinear difference equation with unimodal terms
In the present paper, we study the asymptotic behavior of the following higher order nonlinear difference equation with unimodal terms \[x(n+1)= ax(n)+ bx(n)g(x(n)) + cx(n-k)g(x(n-k)), \quad n=0, 1, \ldots,\] where \(a\), \(b\) and \(c\) are constants with \(0\lt a\lt 1\), \(0\leq b\lt 1\), \(0\leq c \lt 1\) and \(a+b+c=1\), \(g\in C[[0, \infty), [0, \infty)]\) is decreasing, and \(k\) is a positive integer. We obtain some new sufficient conditions for the global attractivity of positive solutions of the equation. Applications to some population models are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信