具有两个时滞的线性微分方程的稳定性切换

IF 1 Q1 MATHEMATICS
Y. Hata, H. Matsunaga
{"title":"具有两个时滞的线性微分方程的稳定性切换","authors":"Y. Hata, H. Matsunaga","doi":"10.7494/opmath.2022.42.5.673","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the study of the effect of delays on the asymptotic stability of a linear differential equation with two delays \\[x'(t)=-ax(t)-bx(t-\\tau)-cx(t-2\\tau),\\quad t\\geq 0,\\] where \\(a\\), \\(b\\), and \\(c\\) are real numbers and \\(\\tau\\gt 0\\). We establish some explicit conditions for the zero solution of the equation to be asymptotically stable. As a corollary, it is shown that the zero solution becomes unstable eventually after undergoing stability switches finite times when \\(\\tau\\) increases only if \\(c-a\\lt 0\\) and \\(\\sqrt{-8c(c-a)}\\lt |b| \\lt a+c\\). The explicit stability dependence on the changing \\(\\tau\\) is also described.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability switches in a linear differential equation with two delays\",\"authors\":\"Y. Hata, H. Matsunaga\",\"doi\":\"10.7494/opmath.2022.42.5.673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the study of the effect of delays on the asymptotic stability of a linear differential equation with two delays \\\\[x'(t)=-ax(t)-bx(t-\\\\tau)-cx(t-2\\\\tau),\\\\quad t\\\\geq 0,\\\\] where \\\\(a\\\\), \\\\(b\\\\), and \\\\(c\\\\) are real numbers and \\\\(\\\\tau\\\\gt 0\\\\). We establish some explicit conditions for the zero solution of the equation to be asymptotically stable. As a corollary, it is shown that the zero solution becomes unstable eventually after undergoing stability switches finite times when \\\\(\\\\tau\\\\) increases only if \\\\(c-a\\\\lt 0\\\\) and \\\\(\\\\sqrt{-8c(c-a)}\\\\lt |b| \\\\lt a+c\\\\). The explicit stability dependence on the changing \\\\(\\\\tau\\\\) is also described.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.5.673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.5.673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了时滞对双时滞线性微分方程渐近稳定性的影响 \[x'(t)=-ax(t)-bx(t-\tau)-cx(t-2\tau),\quad t\geq 0,\] 在哪里 \(a\), \(b\),和 \(c\) 是实数和 \(\tau\gt 0\). 建立了该方程零解渐近稳定的若干显式条件。作为一个推论,证明了零解在经历稳定切换有限次后最终变得不稳定 \(\tau\) 只有当 \(c-a\lt 0\) 和 \(\sqrt{-8c(c-a)}\lt |b| \lt a+c\). 显式稳定性依赖于变化 \(\tau\) 还描述了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability switches in a linear differential equation with two delays
This paper is devoted to the study of the effect of delays on the asymptotic stability of a linear differential equation with two delays \[x'(t)=-ax(t)-bx(t-\tau)-cx(t-2\tau),\quad t\geq 0,\] where \(a\), \(b\), and \(c\) are real numbers and \(\tau\gt 0\). We establish some explicit conditions for the zero solution of the equation to be asymptotically stable. As a corollary, it is shown that the zero solution becomes unstable eventually after undergoing stability switches finite times when \(\tau\) increases only if \(c-a\lt 0\) and \(\sqrt{-8c(c-a)}\lt |b| \lt a+c\). The explicit stability dependence on the changing \(\tau\) is also described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信