球外p- laplace Kirchhoff型问题径向正解的存在性

IF 1 Q1 MATHEMATICS
J. Graef, Doudja Hebboul, T. Moussaoui
{"title":"球外p- laplace Kirchhoff型问题径向正解的存在性","authors":"J. Graef, Doudja Hebboul, T. Moussaoui","doi":"10.7494/opmath.2023.43.1.47","DOIUrl":null,"url":null,"abstract":"In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \\(p\\)-Laplacian \\[-\\Big(a+b\\int_{\\Omega_e}|\\nabla u|^p dx\\Big)\\Delta_p u=\\lambda f\\left(|x|,u\\right),\\ x\\in \\Omega_e,\\quad u=0\\ \\text{on} \\ \\partial\\Omega_e,\\] where \\(\\lambda \\gt 0\\) is a parameter, \\(\\Omega_e = \\lbrace x\\in\\mathbb{R}^N : |x|\\gt r_0\\rbrace\\), \\(r_0\\gt 0\\), \\(N \\gt p \\gt 1\\), \\(\\Delta_p\\) is the \\(p\\)-Laplacian operator, and \\(f\\in C(\\left[ r_0, +\\infty\\right)\\times\\left[0,+\\infty\\right),\\mathbb{R})\\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \\(\\lambda\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball\",\"authors\":\"J. Graef, Doudja Hebboul, T. Moussaoui\",\"doi\":\"10.7494/opmath.2023.43.1.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \\\\(p\\\\)-Laplacian \\\\[-\\\\Big(a+b\\\\int_{\\\\Omega_e}|\\\\nabla u|^p dx\\\\Big)\\\\Delta_p u=\\\\lambda f\\\\left(|x|,u\\\\right),\\\\ x\\\\in \\\\Omega_e,\\\\quad u=0\\\\ \\\\text{on} \\\\ \\\\partial\\\\Omega_e,\\\\] where \\\\(\\\\lambda \\\\gt 0\\\\) is a parameter, \\\\(\\\\Omega_e = \\\\lbrace x\\\\in\\\\mathbb{R}^N : |x|\\\\gt r_0\\\\rbrace\\\\), \\\\(r_0\\\\gt 0\\\\), \\\\(N \\\\gt p \\\\gt 1\\\\), \\\\(\\\\Delta_p\\\\) is the \\\\(p\\\\)-Laplacian operator, and \\\\(f\\\\in C(\\\\left[ r_0, +\\\\infty\\\\right)\\\\times\\\\left[0,+\\\\infty\\\\right),\\\\mathbb{R})\\\\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \\\\(\\\\lambda\\\\).\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.1.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.1.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了涉及\(p\) -Laplacian \[-\Big(a+b\int_{\Omega_e}|\nabla u|^p dx\Big)\Delta_p u=\lambda f\left(|x|,u\right),\ x\in \Omega_e,\quad u=0\ \text{on} \ \partial\Omega_e,\]的Kirchhoff型问题的正径向解的存在性,其中\(\lambda \gt 0\)是参数,\(\Omega_e = \lbrace x\in\mathbb{R}^N : |x|\gt r_0\rbrace\), \(r_0\gt 0\), \(N \gt p \gt 1\), \(\Delta_p\)是\(p\) -Laplacian算子,\(f\in C(\left[ r_0, +\infty\right)\times\left[0,+\infty\right),\mathbb{R})\)是关于其第二变量的非递减函数。利用山口定理,证明了\(\lambda\)小值时径向正解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball
In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \(p\)-Laplacian \[-\Big(a+b\int_{\Omega_e}|\nabla u|^p dx\Big)\Delta_p u=\lambda f\left(|x|,u\right),\ x\in \Omega_e,\quad u=0\ \text{on} \ \partial\Omega_e,\] where \(\lambda \gt 0\) is a parameter, \(\Omega_e = \lbrace x\in\mathbb{R}^N : |x|\gt r_0\rbrace\), \(r_0\gt 0\), \(N \gt p \gt 1\), \(\Delta_p\) is the \(p\)-Laplacian operator, and \(f\in C(\left[ r_0, +\infty\right)\times\left[0,+\infty\right),\mathbb{R})\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \(\lambda\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信