{"title":"球外p- laplace Kirchhoff型问题径向正解的存在性","authors":"J. Graef, Doudja Hebboul, T. Moussaoui","doi":"10.7494/opmath.2023.43.1.47","DOIUrl":null,"url":null,"abstract":"In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \\(p\\)-Laplacian \\[-\\Big(a+b\\int_{\\Omega_e}|\\nabla u|^p dx\\Big)\\Delta_p u=\\lambda f\\left(|x|,u\\right),\\ x\\in \\Omega_e,\\quad u=0\\ \\text{on} \\ \\partial\\Omega_e,\\] where \\(\\lambda \\gt 0\\) is a parameter, \\(\\Omega_e = \\lbrace x\\in\\mathbb{R}^N : |x|\\gt r_0\\rbrace\\), \\(r_0\\gt 0\\), \\(N \\gt p \\gt 1\\), \\(\\Delta_p\\) is the \\(p\\)-Laplacian operator, and \\(f\\in C(\\left[ r_0, +\\infty\\right)\\times\\left[0,+\\infty\\right),\\mathbb{R})\\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \\(\\lambda\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball\",\"authors\":\"J. Graef, Doudja Hebboul, T. Moussaoui\",\"doi\":\"10.7494/opmath.2023.43.1.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \\\\(p\\\\)-Laplacian \\\\[-\\\\Big(a+b\\\\int_{\\\\Omega_e}|\\\\nabla u|^p dx\\\\Big)\\\\Delta_p u=\\\\lambda f\\\\left(|x|,u\\\\right),\\\\ x\\\\in \\\\Omega_e,\\\\quad u=0\\\\ \\\\text{on} \\\\ \\\\partial\\\\Omega_e,\\\\] where \\\\(\\\\lambda \\\\gt 0\\\\) is a parameter, \\\\(\\\\Omega_e = \\\\lbrace x\\\\in\\\\mathbb{R}^N : |x|\\\\gt r_0\\\\rbrace\\\\), \\\\(r_0\\\\gt 0\\\\), \\\\(N \\\\gt p \\\\gt 1\\\\), \\\\(\\\\Delta_p\\\\) is the \\\\(p\\\\)-Laplacian operator, and \\\\(f\\\\in C(\\\\left[ r_0, +\\\\infty\\\\right)\\\\times\\\\left[0,+\\\\infty\\\\right),\\\\mathbb{R})\\\\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \\\\(\\\\lambda\\\\).\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.1.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.1.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of positive radial solutions to a p-Laplacian Kirchhoff type problem on the exterior of a ball
In this paper the authors study the existence of positive radial solutions to the Kirchhoff type problem involving the \(p\)-Laplacian \[-\Big(a+b\int_{\Omega_e}|\nabla u|^p dx\Big)\Delta_p u=\lambda f\left(|x|,u\right),\ x\in \Omega_e,\quad u=0\ \text{on} \ \partial\Omega_e,\] where \(\lambda \gt 0\) is a parameter, \(\Omega_e = \lbrace x\in\mathbb{R}^N : |x|\gt r_0\rbrace\), \(r_0\gt 0\), \(N \gt p \gt 1\), \(\Delta_p\) is the \(p\)-Laplacian operator, and \(f\in C(\left[ r_0, +\infty\right)\times\left[0,+\infty\right),\mathbb{R})\) is a non-decreasing function with respect to its second variable. By using the Mountain Pass Theorem, they prove the existence of positive radial solutions for small values of \(\lambda\).