{"title":"海森堡群中某些关键方程的全解","authors":"P. Pucci, Letizia Temperini","doi":"10.7494/opmath.2022.42.2.279","DOIUrl":null,"url":null,"abstract":"We complete the study started in the paper [P. Pucci, L.Temperini, On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng. 5 (2023), Paper no. 007], giving some applications of its abstract results to get existence of solutions of certain critical equations in the entire Heinseberg group. In particular, different conditions for existence are given for critical horizontal \\(p\\)-Laplacian equations.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Entire solutions for some critical equations in the Heisenberg group\",\"authors\":\"P. Pucci, Letizia Temperini\",\"doi\":\"10.7494/opmath.2022.42.2.279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We complete the study started in the paper [P. Pucci, L.Temperini, On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng. 5 (2023), Paper no. 007], giving some applications of its abstract results to get existence of solutions of certain critical equations in the entire Heinseberg group. In particular, different conditions for existence are given for critical horizontal \\\\(p\\\\)-Laplacian equations.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.2.279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.2.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Entire solutions for some critical equations in the Heisenberg group
We complete the study started in the paper [P. Pucci, L.Temperini, On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng. 5 (2023), Paper no. 007], giving some applications of its abstract results to get existence of solutions of certain critical equations in the entire Heinseberg group. In particular, different conditions for existence are given for critical horizontal \(p\)-Laplacian equations.