具有四个奇异点的二阶傅氏微分方程的单调不变厄米形式

IF 1 Q1 MATHEMATICS
Shunya Adachi
{"title":"具有四个奇异点的二阶傅氏微分方程的单调不变厄米形式","authors":"Shunya Adachi","doi":"10.7494/opmath.2022.42.3.361","DOIUrl":null,"url":null,"abstract":"We study the monodromy invariant Hermitian forms for second order Fuchsian differential equations with four singularities. The moduli space of our monodromy representations can be realized by certain affine cubic surface. In this paper we characterize the irreducible monodromies having the non-degenerate invariant Hermitian forms in terms of that cubic surface. The explicit forms of invariant Hermitian forms are also given. Our result may bring a new insight into the study of the Painlev� differential equations.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monodromy invariant Hermitian forms for second order Fuchsian differential equations with four singularities\",\"authors\":\"Shunya Adachi\",\"doi\":\"10.7494/opmath.2022.42.3.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the monodromy invariant Hermitian forms for second order Fuchsian differential equations with four singularities. The moduli space of our monodromy representations can be realized by certain affine cubic surface. In this paper we characterize the irreducible monodromies having the non-degenerate invariant Hermitian forms in terms of that cubic surface. The explicit forms of invariant Hermitian forms are also given. Our result may bring a new insight into the study of the Painlev� differential equations.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.3.361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.3.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有四个奇异点的二阶Fuchsian微分方程的单调不变厄米形式。我们的单态表示的模空间可以用一定的仿射立方曲面来实现。本文在该三次曲面上刻画了具有非简并不变厄米形式的不可约单点。同时给出了不变厄米形式的显式。我们的结果可能会给Painlev微分方程的研究带来新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monodromy invariant Hermitian forms for second order Fuchsian differential equations with four singularities
We study the monodromy invariant Hermitian forms for second order Fuchsian differential equations with four singularities. The moduli space of our monodromy representations can be realized by certain affine cubic surface. In this paper we characterize the irreducible monodromies having the non-degenerate invariant Hermitian forms in terms of that cubic surface. The explicit forms of invariant Hermitian forms are also given. Our result may bring a new insight into the study of the Painlev� differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信