{"title":"双相问题:最近一些研究成果的综述","authors":"Nikolaos S. Papageorgiou","doi":"10.7494/opmath.2022.42.2.257","DOIUrl":null,"url":null,"abstract":"We review some recent results on double phase problems. We focus on the relevant function space framework, which is provided by the generalized Orlicz spaces. We also describe the basic tools and methods used to deal with double phase problems, given that there is no global regularity theory for these problems.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Double phase problems: a survey of some recent results\",\"authors\":\"Nikolaos S. Papageorgiou\",\"doi\":\"10.7494/opmath.2022.42.2.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review some recent results on double phase problems. We focus on the relevant function space framework, which is provided by the generalized Orlicz spaces. We also describe the basic tools and methods used to deal with double phase problems, given that there is no global regularity theory for these problems.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.2.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.2.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Double phase problems: a survey of some recent results
We review some recent results on double phase problems. We focus on the relevant function space framework, which is provided by the generalized Orlicz spaces. We also describe the basic tools and methods used to deal with double phase problems, given that there is no global regularity theory for these problems.