{"title":"一些四阶应变波方程在任意正初始能级上的爆破现象","authors":"Q. Lin, Yong-bing Luo","doi":"10.7494/opmath.2022.42.2.219","DOIUrl":null,"url":null,"abstract":"In this paper, we study a series of fourth-order strain wave equations involving dissipative structure, which appears in elasto-plastic-microstructure models. By some differential inequalities, we derive the finite time blow up results and the estimates of the upper bound blowup time with arbitrary positive initial energy. We also discuss the influence mechanism of the linear weak damping and strong damping on blowup time, respectively.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blowup phenomena for some fourth-order strain wave equations at arbitrary positive initial energy level\",\"authors\":\"Q. Lin, Yong-bing Luo\",\"doi\":\"10.7494/opmath.2022.42.2.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a series of fourth-order strain wave equations involving dissipative structure, which appears in elasto-plastic-microstructure models. By some differential inequalities, we derive the finite time blow up results and the estimates of the upper bound blowup time with arbitrary positive initial energy. We also discuss the influence mechanism of the linear weak damping and strong damping on blowup time, respectively.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.2.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.2.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Blowup phenomena for some fourth-order strain wave equations at arbitrary positive initial energy level
In this paper, we study a series of fourth-order strain wave equations involving dissipative structure, which appears in elasto-plastic-microstructure models. By some differential inequalities, we derive the finite time blow up results and the estimates of the upper bound blowup time with arbitrary positive initial energy. We also discuss the influence mechanism of the linear weak damping and strong damping on blowup time, respectively.