{"title":"半平面上修正Veselov-Novikov方程的d-bar形式","authors":"Guenbo Hwang, Byungsoo Moon","doi":"10.7494/opmath.2022.42.2.179","DOIUrl":null,"url":null,"abstract":"We study the modified Veselov-Novikov equation (mVN) posed on the half-plane via the Fokas method, considered as an extension of the inverse scattering transform for boundary value problems. The mVN equation is one of the most natural \\((2+1)\\)-dimensional generalization of the \\((1+1)\\)-dimensional modified Korteweg-de Vries equation in the sense as to how the Novikov-Veselov equation is related to the Korteweg-de Vries equation. In this paper, by means of the Fokas method, we present the so-called global relation for the mVN equation, which is an algebraic equation coupled with the spectral functions, and the \\(d\\)-bar formalism, also known as Pompieu's formula. In addition, we characterize the \\(d\\)-bar derivatives and the relevant jumps across certain domains of the complex plane in terms of the spectral functions.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The d-bar formalism for the modified Veselov-Novikov equation on the half-plane\",\"authors\":\"Guenbo Hwang, Byungsoo Moon\",\"doi\":\"10.7494/opmath.2022.42.2.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the modified Veselov-Novikov equation (mVN) posed on the half-plane via the Fokas method, considered as an extension of the inverse scattering transform for boundary value problems. The mVN equation is one of the most natural \\\\((2+1)\\\\)-dimensional generalization of the \\\\((1+1)\\\\)-dimensional modified Korteweg-de Vries equation in the sense as to how the Novikov-Veselov equation is related to the Korteweg-de Vries equation. In this paper, by means of the Fokas method, we present the so-called global relation for the mVN equation, which is an algebraic equation coupled with the spectral functions, and the \\\\(d\\\\)-bar formalism, also known as Pompieu's formula. In addition, we characterize the \\\\(d\\\\)-bar derivatives and the relevant jumps across certain domains of the complex plane in terms of the spectral functions.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.2.179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.2.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The d-bar formalism for the modified Veselov-Novikov equation on the half-plane
We study the modified Veselov-Novikov equation (mVN) posed on the half-plane via the Fokas method, considered as an extension of the inverse scattering transform for boundary value problems. The mVN equation is one of the most natural \((2+1)\)-dimensional generalization of the \((1+1)\)-dimensional modified Korteweg-de Vries equation in the sense as to how the Novikov-Veselov equation is related to the Korteweg-de Vries equation. In this paper, by means of the Fokas method, we present the so-called global relation for the mVN equation, which is an algebraic equation coupled with the spectral functions, and the \(d\)-bar formalism, also known as Pompieu's formula. In addition, we characterize the \(d\)-bar derivatives and the relevant jumps across certain domains of the complex plane in terms of the spectral functions.