半平面上修正Veselov-Novikov方程的d-bar形式

IF 1 Q1 MATHEMATICS
Guenbo Hwang, Byungsoo Moon
{"title":"半平面上修正Veselov-Novikov方程的d-bar形式","authors":"Guenbo Hwang, Byungsoo Moon","doi":"10.7494/opmath.2022.42.2.179","DOIUrl":null,"url":null,"abstract":"We study the modified Veselov-Novikov equation (mVN) posed on the half-plane via the Fokas method, considered as an extension of the inverse scattering transform for boundary value problems. The mVN equation is one of the most natural \\((2+1)\\)-dimensional generalization of the \\((1+1)\\)-dimensional modified Korteweg-de Vries equation in the sense as to how the Novikov-Veselov equation is related to the Korteweg-de Vries equation. In this paper, by means of the Fokas method, we present the so-called global relation for the mVN equation, which is an algebraic equation coupled with the spectral functions, and the \\(d\\)-bar formalism, also known as Pompieu's formula. In addition, we characterize the \\(d\\)-bar derivatives and the relevant jumps across certain domains of the complex plane in terms of the spectral functions.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The d-bar formalism for the modified Veselov-Novikov equation on the half-plane\",\"authors\":\"Guenbo Hwang, Byungsoo Moon\",\"doi\":\"10.7494/opmath.2022.42.2.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the modified Veselov-Novikov equation (mVN) posed on the half-plane via the Fokas method, considered as an extension of the inverse scattering transform for boundary value problems. The mVN equation is one of the most natural \\\\((2+1)\\\\)-dimensional generalization of the \\\\((1+1)\\\\)-dimensional modified Korteweg-de Vries equation in the sense as to how the Novikov-Veselov equation is related to the Korteweg-de Vries equation. In this paper, by means of the Fokas method, we present the so-called global relation for the mVN equation, which is an algebraic equation coupled with the spectral functions, and the \\\\(d\\\\)-bar formalism, also known as Pompieu's formula. In addition, we characterize the \\\\(d\\\\)-bar derivatives and the relevant jumps across certain domains of the complex plane in terms of the spectral functions.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.2.179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.2.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Fokas方法研究了半平面上的修正Veselov-Novikov方程(mVN),并将其作为边值问题的逆散射变换的推广。就Novikov-Veselov方程与Korteweg-de Vries方程的关系而言,mVN方程是\((1+1)\)维修正Korteweg-de Vries方程的最自然的\((2+1)\)维推广之一。本文利用Fokas方法,给出了具有谱函数耦合的代数方程mVN方程的所谓全局关系,以及\(d\) -bar形式,也称为Pompieu公式。此外,我们用谱函数描述了\(d\) -bar导数和复平面某些域上的相关跳变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The d-bar formalism for the modified Veselov-Novikov equation on the half-plane
We study the modified Veselov-Novikov equation (mVN) posed on the half-plane via the Fokas method, considered as an extension of the inverse scattering transform for boundary value problems. The mVN equation is one of the most natural \((2+1)\)-dimensional generalization of the \((1+1)\)-dimensional modified Korteweg-de Vries equation in the sense as to how the Novikov-Veselov equation is related to the Korteweg-de Vries equation. In this paper, by means of the Fokas method, we present the so-called global relation for the mVN equation, which is an algebraic equation coupled with the spectral functions, and the \(d\)-bar formalism, also known as Pompieu's formula. In addition, we characterize the \(d\)-bar derivatives and the relevant jumps across certain domains of the complex plane in terms of the spectral functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信