具有对数非线性的分数阶非局部方程的基态

IF 1 Q1 MATHEMATICS
Lifeng Guo, Y. Sun, Guannan Shi
{"title":"具有对数非线性的分数阶非局部方程的基态","authors":"Lifeng Guo, Y. Sun, Guannan Shi","doi":"10.7494/opmath.2022.42.2.157","DOIUrl":null,"url":null,"abstract":"In this paper, we study on the fractional nonlocal equation with the logarithmic nonlinearity formed by \\[\\begin{cases}\\mathcal{L}_{K}u(x)+u\\log|u|+|u|^{q-2}u=0, & x\\in\\Omega,\\\\ u=0, & x\\in\\mathbb{R}^{n}\\setminus\\Omega,\\end{cases}\\] where \\(2\\lt q\\lt 2^{*}_s\\), \\(L_{K}\\) is a non-local operator, \\(\\Omega\\) is an open bounded set of \\(\\mathbb{R}^{n}\\) with Lipschitz boundary. By using the fractional logarithmic Sobolev inequality and the linking theorem, we present the existence theorem of the ground state solutions for this nonlocal problem.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground states for fractional nonlocal equations with logarithmic nonlinearity\",\"authors\":\"Lifeng Guo, Y. Sun, Guannan Shi\",\"doi\":\"10.7494/opmath.2022.42.2.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study on the fractional nonlocal equation with the logarithmic nonlinearity formed by \\\\[\\\\begin{cases}\\\\mathcal{L}_{K}u(x)+u\\\\log|u|+|u|^{q-2}u=0, & x\\\\in\\\\Omega,\\\\\\\\ u=0, & x\\\\in\\\\mathbb{R}^{n}\\\\setminus\\\\Omega,\\\\end{cases}\\\\] where \\\\(2\\\\lt q\\\\lt 2^{*}_s\\\\), \\\\(L_{K}\\\\) is a non-local operator, \\\\(\\\\Omega\\\\) is an open bounded set of \\\\(\\\\mathbb{R}^{n}\\\\) with Lipschitz boundary. By using the fractional logarithmic Sobolev inequality and the linking theorem, we present the existence theorem of the ground state solutions for this nonlocal problem.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.2.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.2.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了分数阶非局部方程的对数非线性 \[\begin{cases}\mathcal{L}_{K}u(x)+u\log|u|+|u|^{q-2}u=0, & x\in\Omega,\\ u=0, & x\in\mathbb{R}^{n}\setminus\Omega,\end{cases}\] 在哪里 \(2\lt q\lt 2^{*}_s\), \(L_{K}\) 是一个非本地运营商, \(\Omega\) 开有界集合是 \(\mathbb{R}^{n}\) 具有利普希茨边界。利用分数对数Sobolev不等式和连接定理,给出了该非局部问题基态解的存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground states for fractional nonlocal equations with logarithmic nonlinearity
In this paper, we study on the fractional nonlocal equation with the logarithmic nonlinearity formed by \[\begin{cases}\mathcal{L}_{K}u(x)+u\log|u|+|u|^{q-2}u=0, & x\in\Omega,\\ u=0, & x\in\mathbb{R}^{n}\setminus\Omega,\end{cases}\] where \(2\lt q\lt 2^{*}_s\), \(L_{K}\) is a non-local operator, \(\Omega\) is an open bounded set of \(\mathbb{R}^{n}\) with Lipschitz boundary. By using the fractional logarithmic Sobolev inequality and the linking theorem, we present the existence theorem of the ground state solutions for this nonlocal problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信