{"title":"具有混合偏离参数的偶阶线性泛函微分方程的振动性","authors":"B. Baculíková","doi":"10.7494/opmath.2022.42.4.549","DOIUrl":null,"url":null,"abstract":"In the paper, we study oscillation and asymptotic properties for even order linear functional differential equations \\[y^{(n)}(t)=p(t)y(\\tau(t))\\] with mixed deviating arguments, i.e. when both delayed and advanced parts of \\(\\tau(t)\\) are significant. The presented results essentially improve existing ones.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillation of even order linear functional differential equations with mixed deviating arguments\",\"authors\":\"B. Baculíková\",\"doi\":\"10.7494/opmath.2022.42.4.549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we study oscillation and asymptotic properties for even order linear functional differential equations \\\\[y^{(n)}(t)=p(t)y(\\\\tau(t))\\\\] with mixed deviating arguments, i.e. when both delayed and advanced parts of \\\\(\\\\tau(t)\\\\) are significant. The presented results essentially improve existing ones.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.4.549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.4.549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Oscillation of even order linear functional differential equations with mixed deviating arguments
In the paper, we study oscillation and asymptotic properties for even order linear functional differential equations \[y^{(n)}(t)=p(t)y(\tau(t))\] with mixed deviating arguments, i.e. when both delayed and advanced parts of \(\tau(t)\) are significant. The presented results essentially improve existing ones.