具有强阻尼和源项的拟线性粘弹性方程的整体存在性和爆破现象

IF 1 Q1 MATHEMATICS
Huafei Di, Zefang Song
{"title":"具有强阻尼和源项的拟线性粘弹性方程的整体存在性和爆破现象","authors":"Huafei Di, Zefang Song","doi":"10.7494/opmath.2022.42.2.119","DOIUrl":null,"url":null,"abstract":"Considered herein is the global existence and non-global existence of the initial-boundary value problem for a quasilinear viscoelastic equation with strong damping and source terms. Firstly, we introduce a family of potential wells and give the invariance of some sets, which are essential to derive the main results. Secondly, we establish the existence of global weak solutions under the low initial energy and critical initial energy by the combination of the Galerkin approximation and improved potential well method involving with \\(t\\). Thirdly, we obtain the finite time blow-up result for certain solutions with the non-positive initial energy and positive initial energy, and then give the upper bound for the blow-up time \\(T^\\ast\\). Especially, the threshold result between global existence and non-global existence is given under some certain conditions. Finally, a lower bound for the life span \\(T^\\ast\\) is derived by the means of integro-differential inequality techniques.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Global existence and blow-up phenomenon for a quasilinear viscoelastic equation with strong damping and source terms\",\"authors\":\"Huafei Di, Zefang Song\",\"doi\":\"10.7494/opmath.2022.42.2.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considered herein is the global existence and non-global existence of the initial-boundary value problem for a quasilinear viscoelastic equation with strong damping and source terms. Firstly, we introduce a family of potential wells and give the invariance of some sets, which are essential to derive the main results. Secondly, we establish the existence of global weak solutions under the low initial energy and critical initial energy by the combination of the Galerkin approximation and improved potential well method involving with \\\\(t\\\\). Thirdly, we obtain the finite time blow-up result for certain solutions with the non-positive initial energy and positive initial energy, and then give the upper bound for the blow-up time \\\\(T^\\\\ast\\\\). Especially, the threshold result between global existence and non-global existence is given under some certain conditions. Finally, a lower bound for the life span \\\\(T^\\\\ast\\\\) is derived by the means of integro-differential inequality techniques.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.2.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.2.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一类具有强阻尼和源项的拟线性粘弹性方程初边值问题的整体存在性和非整体存在性。首先,我们引入了一组势阱,并给出了一些势阱集的不变性,这是推导主要结果所必需的。其次,结合Galerkin近似和改进势阱法,利用\(t\)建立了低初始能量和临界初始能量下全局弱解的存在性。第三,我们得到了具有非正初始能量和正初始能量的某些解的有限时间爆破结果,并给出了爆破时间的上界\(T^\ast\)。特别是在一定条件下,给出了全局存在与非全局存在的阈值结果。最后,利用积分微分不等式的方法推导了寿命\(T^\ast\)的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and blow-up phenomenon for a quasilinear viscoelastic equation with strong damping and source terms
Considered herein is the global existence and non-global existence of the initial-boundary value problem for a quasilinear viscoelastic equation with strong damping and source terms. Firstly, we introduce a family of potential wells and give the invariance of some sets, which are essential to derive the main results. Secondly, we establish the existence of global weak solutions under the low initial energy and critical initial energy by the combination of the Galerkin approximation and improved potential well method involving with \(t\). Thirdly, we obtain the finite time blow-up result for certain solutions with the non-positive initial energy and positive initial energy, and then give the upper bound for the blow-up time \(T^\ast\). Especially, the threshold result between global existence and non-global existence is given under some certain conditions. Finally, a lower bound for the life span \(T^\ast\) is derived by the means of integro-differential inequality techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信