某些图形的强三虹指数及其合并

IF 1 Q1 MATHEMATICS
Z. Awanis, A. Salman
{"title":"某些图形的强三虹指数及其合并","authors":"Z. Awanis, A. Salman","doi":"10.7494/opmath.2022.42.4.527","DOIUrl":null,"url":null,"abstract":"We introduce a strong \\(k\\)-rainbow index of graphs as modification of well-known \\(k\\)-rainbow index of graphs. A tree in an edge-colored connected graph \\(G\\), where adjacent edge may be colored the same, is a rainbow tree if all of its edges have distinct colors. Let \\(k\\) be an integer with \\(2\\leq k\\leq n\\). The strong \\(k\\)-rainbow index of \\(G\\), denoted by \\(srx_k(G)\\), is the minimum number of colors needed in an edge-coloring of \\(G\\) so that every \\(k\\) vertices of \\(G\\) is connected by a rainbow tree with minimum size. We focus on \\(k=3\\). We determine the strong \\(3\\)-rainbow index of some certain graphs. We also provide a sharp upper bound for the strong \\(3\\)-rainbow index of amalgamation of graphs. Additionally, we determine the exact values of the strong \\(3\\)-rainbow index of amalgamation of some graphs.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The strong 3-rainbow index of some certain graphs and its amalgamation\",\"authors\":\"Z. Awanis, A. Salman\",\"doi\":\"10.7494/opmath.2022.42.4.527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a strong \\\\(k\\\\)-rainbow index of graphs as modification of well-known \\\\(k\\\\)-rainbow index of graphs. A tree in an edge-colored connected graph \\\\(G\\\\), where adjacent edge may be colored the same, is a rainbow tree if all of its edges have distinct colors. Let \\\\(k\\\\) be an integer with \\\\(2\\\\leq k\\\\leq n\\\\). The strong \\\\(k\\\\)-rainbow index of \\\\(G\\\\), denoted by \\\\(srx_k(G)\\\\), is the minimum number of colors needed in an edge-coloring of \\\\(G\\\\) so that every \\\\(k\\\\) vertices of \\\\(G\\\\) is connected by a rainbow tree with minimum size. We focus on \\\\(k=3\\\\). We determine the strong \\\\(3\\\\)-rainbow index of some certain graphs. We also provide a sharp upper bound for the strong \\\\(3\\\\)-rainbow index of amalgamation of graphs. Additionally, we determine the exact values of the strong \\\\(3\\\\)-rainbow index of amalgamation of some graphs.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2022.42.4.527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2022.42.4.527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们引入了一种强的\(k\) -彩虹指数作为对已知的\(k\) -彩虹指数的修正。如果树的所有边都有不同的颜色,那么在一个边彩色连通图\(G\)中的树,相邻的边可能是相同的颜色,这就是彩虹树。设\(k\)为整数,其中\(2\leq k\leq n\)为整数。\(G\)的强\(k\) -rainbow指数,用\(srx_k(G)\)表示,是在\(G\)的边着色中需要的最小颜色数,这样\(G\)的每个\(k\)顶点都被一个最小大小的彩虹树连接起来。我们专注于\(k=3\)。我们确定了某些图形的强\(3\) -彩虹指数。我们还给出了图合并的强\(3\) -彩虹指数的一个明显的上界。此外,我们还确定了一些图合并的强\(3\) -彩虹指数的确切值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The strong 3-rainbow index of some certain graphs and its amalgamation
We introduce a strong \(k\)-rainbow index of graphs as modification of well-known \(k\)-rainbow index of graphs. A tree in an edge-colored connected graph \(G\), where adjacent edge may be colored the same, is a rainbow tree if all of its edges have distinct colors. Let \(k\) be an integer with \(2\leq k\leq n\). The strong \(k\)-rainbow index of \(G\), denoted by \(srx_k(G)\), is the minimum number of colors needed in an edge-coloring of \(G\) so that every \(k\) vertices of \(G\) is connected by a rainbow tree with minimum size. We focus on \(k=3\). We determine the strong \(3\)-rainbow index of some certain graphs. We also provide a sharp upper bound for the strong \(3\)-rainbow index of amalgamation of graphs. Additionally, we determine the exact values of the strong \(3\)-rainbow index of amalgamation of some graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信