平面上某些康托集合的交点的维数

IF 1 Q1 MATHEMATICS
S. Pedersen, Vincent T. Shaw
{"title":"平面上某些康托集合的交点的维数","authors":"S. Pedersen, Vincent T. Shaw","doi":"10.7494/OPMATH.2021.41.2.227","DOIUrl":null,"url":null,"abstract":"In this paper we consider a retained digits Cantor set \\(T\\) based on digit expansions with Gaussian integer base. Let \\(F\\) be the set all \\(x\\) such that the intersection of \\(T\\) with its translate by \\(x\\) is non-empty and let \\(F_{\\beta}\\) be the subset of \\(F\\) consisting of all \\(x\\) such that the dimension of the intersection of \\(T\\) with its translate by \\(x\\) is \\(\\beta\\) times the dimension of \\(T\\). We find conditions on the retained digits sets under which \\(F_{\\beta}\\) is dense in \\(F\\) for all \\(0\\leq\\beta\\leq 1\\). The main novelty in this paper is that multiplication the Gaussian integer base corresponds to an irrational (in fact transcendental) rotation in the complex plane.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dimension of the intersection of certain Cantor sets in the plane\",\"authors\":\"S. Pedersen, Vincent T. Shaw\",\"doi\":\"10.7494/OPMATH.2021.41.2.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a retained digits Cantor set \\\\(T\\\\) based on digit expansions with Gaussian integer base. Let \\\\(F\\\\) be the set all \\\\(x\\\\) such that the intersection of \\\\(T\\\\) with its translate by \\\\(x\\\\) is non-empty and let \\\\(F_{\\\\beta}\\\\) be the subset of \\\\(F\\\\) consisting of all \\\\(x\\\\) such that the dimension of the intersection of \\\\(T\\\\) with its translate by \\\\(x\\\\) is \\\\(\\\\beta\\\\) times the dimension of \\\\(T\\\\). We find conditions on the retained digits sets under which \\\\(F_{\\\\beta}\\\\) is dense in \\\\(F\\\\) for all \\\\(0\\\\leq\\\\beta\\\\leq 1\\\\). The main novelty in this paper is that multiplication the Gaussian integer base corresponds to an irrational (in fact transcendental) rotation in the complex plane.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/OPMATH.2021.41.2.227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.2.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了一个基于高斯整数基数的数字展开式的保留数字Cantor集\(T\)。设\(F\)为所有\(x\)的集合,使得\(T\)与其翻译的\(x\)的交集为非空;设\(F_{\beta}\)为\(F\)的子集,由所有\(x\)组成,使得\(T\)与其翻译的\(x\)的交集维数为\(\beta\)乘以\(T\)的维数。我们找到了保留数字集的条件,在这些条件下,对于所有\(0\leq\beta\leq 1\), \(F_{\beta}\)在\(F\)中是密集的。本文的主要新颖之处在于高斯整数基的乘法对应于复平面上的无理数(实际上是超越的)旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimension of the intersection of certain Cantor sets in the plane
In this paper we consider a retained digits Cantor set \(T\) based on digit expansions with Gaussian integer base. Let \(F\) be the set all \(x\) such that the intersection of \(T\) with its translate by \(x\) is non-empty and let \(F_{\beta}\) be the subset of \(F\) consisting of all \(x\) such that the dimension of the intersection of \(T\) with its translate by \(x\) is \(\beta\) times the dimension of \(T\). We find conditions on the retained digits sets under which \(F_{\beta}\) is dense in \(F\) for all \(0\leq\beta\leq 1\). The main novelty in this paper is that multiplication the Gaussian integer base corresponds to an irrational (in fact transcendental) rotation in the complex plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信