非局域δ-相互作用下Schrödinger算子的s矩阵

IF 1 Q1 MATHEMATICS
A. Główczyk, S. Kużel
{"title":"非局域δ-相互作用下Schrödinger算子的s矩阵","authors":"A. Główczyk, S. Kużel","doi":"10.7494/OPMATH.2021.41.3.413","DOIUrl":null,"url":null,"abstract":"Schrödinger operators with nonlocal \\(\\delta\\)-interaction are studied with the use of the Lax-Phillips scattering theory methods. The condition of applicability of the Lax-Phillips approach in terms of non-cyclic functions is established. Two formulas for the \\(S\\)-matrix are obtained. The first one deals with the Krein-Naimark resolvent formula and the Weyl-Titchmarsh function, whereas the second one is based on modified reflection and transmission coefficients. The \\(S\\)-matrix \\(S(z)\\) is analytical in the lower half-plane \\(\\mathbb{C}_{−}\\) when the Schrödinger operator with nonlocal \\(\\delta\\)-interaction is positive self-adjoint. Otherwise, \\(S(z)\\) is a meromorphic matrix-valued function in \\(\\mathbb{C}_{−}\\) and its properties are closely related to the properties of the corresponding Schrödinger operator. Examples of \\(S\\)-matrices are given.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"41 1","pages":"413-435"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the S-matrix of Schrödinger operator with nonlocal δ-interaction\",\"authors\":\"A. Główczyk, S. Kużel\",\"doi\":\"10.7494/OPMATH.2021.41.3.413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Schrödinger operators with nonlocal \\\\(\\\\delta\\\\)-interaction are studied with the use of the Lax-Phillips scattering theory methods. The condition of applicability of the Lax-Phillips approach in terms of non-cyclic functions is established. Two formulas for the \\\\(S\\\\)-matrix are obtained. The first one deals with the Krein-Naimark resolvent formula and the Weyl-Titchmarsh function, whereas the second one is based on modified reflection and transmission coefficients. The \\\\(S\\\\)-matrix \\\\(S(z)\\\\) is analytical in the lower half-plane \\\\(\\\\mathbb{C}_{−}\\\\) when the Schrödinger operator with nonlocal \\\\(\\\\delta\\\\)-interaction is positive self-adjoint. Otherwise, \\\\(S(z)\\\\) is a meromorphic matrix-valued function in \\\\(\\\\mathbb{C}_{−}\\\\) and its properties are closely related to the properties of the corresponding Schrödinger operator. Examples of \\\\(S\\\\)-matrices are given.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"41 1\",\"pages\":\"413-435\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/OPMATH.2021.41.3.413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.3.413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Schrödinger带有nonlocal的操作符 \(\delta\)利用拉克斯-菲利普斯散射理论方法研究了-相互作用。建立了拉克斯-菲利普斯方法在非循环函数上的适用条件。的两个公式 \(S\)-矩阵得到。第一个是克林-奈马克解析公式和Weyl-Titchmarsh函数,第二个是基于修正的反射系数和透射系数。The \(S\)-矩阵 \(S(z)\) 在下半平面是解析的吗 \(\mathbb{C}_{−}\) 当Schrödinger操作符带有nonlocal \(\delta\)-相互作用是正自伴随的。否则, \(S(z)\) 亚纯矩阵值函数在 \(\mathbb{C}_{−}\) 其性质与对应的Schrödinger算子的性质密切相关。的例子 \(S\)给出-矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the S-matrix of Schrödinger operator with nonlocal δ-interaction
Schrödinger operators with nonlocal \(\delta\)-interaction are studied with the use of the Lax-Phillips scattering theory methods. The condition of applicability of the Lax-Phillips approach in terms of non-cyclic functions is established. Two formulas for the \(S\)-matrix are obtained. The first one deals with the Krein-Naimark resolvent formula and the Weyl-Titchmarsh function, whereas the second one is based on modified reflection and transmission coefficients. The \(S\)-matrix \(S(z)\) is analytical in the lower half-plane \(\mathbb{C}_{−}\) when the Schrödinger operator with nonlocal \(\delta\)-interaction is positive self-adjoint. Otherwise, \(S(z)\) is a meromorphic matrix-valued function in \(\mathbb{C}_{−}\) and its properties are closely related to the properties of the corresponding Schrödinger operator. Examples of \(S\)-matrices are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信