{"title":"关于半线性常微分方程非振动解的存在性的注解,I","authors":"Manabu Naito","doi":"10.7494/OPMATH.2021.41.1.71","DOIUrl":null,"url":null,"abstract":"We consider the half-linear differential equation of the form \\[(p(t)|x'|^{\\alpha}\\mathrm{sgn} x')' + q(t)|x|^{\\alpha}\\mathrm{sgn} x = 0, \\quad t\\geq t_{0},\\] under the assumption \\(\\int_{t_{0}}^{\\infty}p(s)^{-1/\\alpha}ds =\\infty\\). It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \\(t \\to \\infty\\).","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"41 1","pages":"71-94"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, I\",\"authors\":\"Manabu Naito\",\"doi\":\"10.7494/OPMATH.2021.41.1.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the half-linear differential equation of the form \\\\[(p(t)|x'|^{\\\\alpha}\\\\mathrm{sgn} x')' + q(t)|x|^{\\\\alpha}\\\\mathrm{sgn} x = 0, \\\\quad t\\\\geq t_{0},\\\\] under the assumption \\\\(\\\\int_{t_{0}}^{\\\\infty}p(s)^{-1/\\\\alpha}ds =\\\\infty\\\\). It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \\\\(t \\\\to \\\\infty\\\\).\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"41 1\",\"pages\":\"71-94\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/OPMATH.2021.41.1.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.1.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, I
We consider the half-linear differential equation of the form \[(p(t)|x'|^{\alpha}\mathrm{sgn} x')' + q(t)|x|^{\alpha}\mathrm{sgn} x = 0, \quad t\geq t_{0},\] under the assumption \(\int_{t_{0}}^{\infty}p(s)^{-1/\alpha}ds =\infty\). It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as \(t \to \infty\).