更多关于线性和度量树映射

IF 1 Q1 MATHEMATICS
S. Kozerenko
{"title":"更多关于线性和度量树映射","authors":"S. Kozerenko","doi":"10.7494/OPMATH.2021.41.1.55","DOIUrl":null,"url":null,"abstract":"We consider linear and metric self-maps on vertex sets of finite combinatorial trees. Linear maps are maps which preserve intervals between pairs of vertices whereas metric maps are maps which do not increase distances between pairs of vertices. We obtain criteria for a given linear or a metric map to be a positive (negative) under some orientation of the edges in a tree, we characterize trees which admit maps with Markov graphs being paths and prove that the converse of any partial functional digraph is isomorphic to a Markov graph for some suitable map on a tree.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"41 1","pages":"55-70"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More on linear and metric tree maps\",\"authors\":\"S. Kozerenko\",\"doi\":\"10.7494/OPMATH.2021.41.1.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider linear and metric self-maps on vertex sets of finite combinatorial trees. Linear maps are maps which preserve intervals between pairs of vertices whereas metric maps are maps which do not increase distances between pairs of vertices. We obtain criteria for a given linear or a metric map to be a positive (negative) under some orientation of the edges in a tree, we characterize trees which admit maps with Markov graphs being paths and prove that the converse of any partial functional digraph is isomorphic to a Markov graph for some suitable map on a tree.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"41 1\",\"pages\":\"55-70\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/OPMATH.2021.41.1.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/OPMATH.2021.41.1.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究有限组合树顶点集上的线性自映射和度量自映射。线性地图是保留顶点对之间间隔的地图,而度量地图是不增加顶点对之间距离的地图。我们得到了给定线性映射或度量映射在树的某些边的方向下是正(负)的准则,我们刻画了允许马尔可夫图为路径的映射的树,并证明了任何部分泛函有向图的逆与树上某些合适映射的马尔可夫图同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More on linear and metric tree maps
We consider linear and metric self-maps on vertex sets of finite combinatorial trees. Linear maps are maps which preserve intervals between pairs of vertices whereas metric maps are maps which do not increase distances between pairs of vertices. We obtain criteria for a given linear or a metric map to be a positive (negative) under some orientation of the edges in a tree, we characterize trees which admit maps with Markov graphs being paths and prove that the converse of any partial functional digraph is isomorphic to a Markov graph for some suitable map on a tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信