一类Robin型四点bvp的多解存在区域

IF 1 Q1 MATHEMATICS
Amit Verma, Nazia Urus, R. Agarwal
{"title":"一类Robin型四点bvp的多解存在区域","authors":"Amit Verma, Nazia Urus, R. Agarwal","doi":"10.7494/opmath.2021.41.4.571","DOIUrl":null,"url":null,"abstract":"This article aims to prove the existence of a solution and compute the region of existence for a class of four-point nonlinear boundary value problems (NLBVPs) defined as \\[\\begin{gathered} -u''(x)=\\psi(x,u,u'), \\quad x\\in (0,1),\\\\ u'(0)=\\lambda_{1}u(\\xi), \\quad u'(1)=\\lambda_{2} u(\\eta),\\end{gathered}\\] where \\(I=[0,1]\\), \\(0\\lt\\xi\\leq\\eta\\lt 1\\) and \\(\\lambda_1,\\lambda_2\\gt 0\\). The nonlinear source term \\(\\psi\\in C(I\\times\\mathbb{R}^2,\\mathbb{R})\\) is one sided Lipschitz in \\(u\\) with Lipschitz constant \\(L_1\\) and Lipschitz in \\(u'\\) such that \\(|\\psi(x,u,u')-\\psi(x,u,v')|\\leq L_2(x)|u'-v'|\\). We develop monotone iterative technique (MI-technique) in both well ordered and reverse ordered cases. We prove maximum, anti-maximum principle under certain assumptions and use it to show the monotonic behaviour of the sequences of upper-lower solutions. The sufficient conditions are derived for the existence of solution and verified for two examples. The above NLBVPs is linearised using Newton's quasilinearization method which involves a parameter \\(k\\) equivalent to \\(\\max_u\\frac{\\partial \\psi}{\\partial u}\\). We compute the range of \\(k\\) for which iterative sequences are convergent.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Region of existence of multiple solutions for a class of Robin type four-point BVPs\",\"authors\":\"Amit Verma, Nazia Urus, R. Agarwal\",\"doi\":\"10.7494/opmath.2021.41.4.571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to prove the existence of a solution and compute the region of existence for a class of four-point nonlinear boundary value problems (NLBVPs) defined as \\\\[\\\\begin{gathered} -u''(x)=\\\\psi(x,u,u'), \\\\quad x\\\\in (0,1),\\\\\\\\ u'(0)=\\\\lambda_{1}u(\\\\xi), \\\\quad u'(1)=\\\\lambda_{2} u(\\\\eta),\\\\end{gathered}\\\\] where \\\\(I=[0,1]\\\\), \\\\(0\\\\lt\\\\xi\\\\leq\\\\eta\\\\lt 1\\\\) and \\\\(\\\\lambda_1,\\\\lambda_2\\\\gt 0\\\\). The nonlinear source term \\\\(\\\\psi\\\\in C(I\\\\times\\\\mathbb{R}^2,\\\\mathbb{R})\\\\) is one sided Lipschitz in \\\\(u\\\\) with Lipschitz constant \\\\(L_1\\\\) and Lipschitz in \\\\(u'\\\\) such that \\\\(|\\\\psi(x,u,u')-\\\\psi(x,u,v')|\\\\leq L_2(x)|u'-v'|\\\\). We develop monotone iterative technique (MI-technique) in both well ordered and reverse ordered cases. We prove maximum, anti-maximum principle under certain assumptions and use it to show the monotonic behaviour of the sequences of upper-lower solutions. The sufficient conditions are derived for the existence of solution and verified for two examples. The above NLBVPs is linearised using Newton's quasilinearization method which involves a parameter \\\\(k\\\\) equivalent to \\\\(\\\\max_u\\\\frac{\\\\partial \\\\psi}{\\\\partial u}\\\\). We compute the range of \\\\(k\\\\) for which iterative sequences are convergent.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2021.41.4.571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2021.41.4.571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文旨在证明一类四点非线性边值问题(nlbvp)解的存在性,并计算其存在区域,其定义为\[\begin{gathered} -u''(x)=\psi(x,u,u'), \quad x\in (0,1),\\ u'(0)=\lambda_{1}u(\xi), \quad u'(1)=\lambda_{2} u(\eta),\end{gathered}\],其中\(I=[0,1]\), \(0\lt\xi\leq\eta\lt 1\)和\(\lambda_1,\lambda_2\gt 0\)。非线性源项\(\psi\in C(I\times\mathbb{R}^2,\mathbb{R})\)是单面Lipschitz在\(u\)与Lipschitz常数\(L_1\)和Lipschitz在\(u'\),使得\(|\psi(x,u,u')-\psi(x,u,v')|\leq L_2(x)|u'-v'|\)。在良序和逆序情况下,我们发展了单调迭代技术(mi -技术)。在一定的假设条件下证明了极大、反极大原理,并用它来证明上下解序列的单调性。给出了解存在的充分条件,并通过两个算例进行了验证。上述nlbvp使用牛顿的拟线性化方法进行线性化,该方法涉及一个参数\(k\)相当于\(\max_u\frac{\partial \psi}{\partial u}\)。我们计算了\(k\)的范围,迭代序列是收敛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region of existence of multiple solutions for a class of Robin type four-point BVPs
This article aims to prove the existence of a solution and compute the region of existence for a class of four-point nonlinear boundary value problems (NLBVPs) defined as \[\begin{gathered} -u''(x)=\psi(x,u,u'), \quad x\in (0,1),\\ u'(0)=\lambda_{1}u(\xi), \quad u'(1)=\lambda_{2} u(\eta),\end{gathered}\] where \(I=[0,1]\), \(0\lt\xi\leq\eta\lt 1\) and \(\lambda_1,\lambda_2\gt 0\). The nonlinear source term \(\psi\in C(I\times\mathbb{R}^2,\mathbb{R})\) is one sided Lipschitz in \(u\) with Lipschitz constant \(L_1\) and Lipschitz in \(u'\) such that \(|\psi(x,u,u')-\psi(x,u,v')|\leq L_2(x)|u'-v'|\). We develop monotone iterative technique (MI-technique) in both well ordered and reverse ordered cases. We prove maximum, anti-maximum principle under certain assumptions and use it to show the monotonic behaviour of the sequences of upper-lower solutions. The sufficient conditions are derived for the existence of solution and verified for two examples. The above NLBVPs is linearised using Newton's quasilinearization method which involves a parameter \(k\) equivalent to \(\max_u\frac{\partial \psi}{\partial u}\). We compute the range of \(k\) for which iterative sequences are convergent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信