{"title":"具有周期边界条件的离散2n阶差分算子的谱及其应用","authors":"Abdelrachid El Amrouss, O. Hammouti","doi":"10.7494/opmath.2021.41.4.489","DOIUrl":null,"url":null,"abstract":"Let \\(n\\in\\mathbb{N}^{*}\\), and \\(N\\geq n\\) be an integer. We study the spectrum of discrete linear \\(2n\\)-th order eigenvalue problems \\[\\begin{cases}\\sum_{k=0}^{n}(-1)^{k}\\Delta^{2k}u(t-k) = \\lambda u(t) ,\\quad & t\\in[1, N]_{\\mathbb{Z}}, \\\\ \\Delta^{i}u(-(n-1))=\\Delta^{i}u(N-(n-1)),\\quad & i\\in[0, 2n-1]_{\\mathbb{Z}},\\end{cases}\\] where \\(\\lambda\\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \\(2n\\)-th order problems by applying the variational methods and critical point theory.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"68 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications\",\"authors\":\"Abdelrachid El Amrouss, O. Hammouti\",\"doi\":\"10.7494/opmath.2021.41.4.489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(n\\\\in\\\\mathbb{N}^{*}\\\\), and \\\\(N\\\\geq n\\\\) be an integer. We study the spectrum of discrete linear \\\\(2n\\\\)-th order eigenvalue problems \\\\[\\\\begin{cases}\\\\sum_{k=0}^{n}(-1)^{k}\\\\Delta^{2k}u(t-k) = \\\\lambda u(t) ,\\\\quad & t\\\\in[1, N]_{\\\\mathbb{Z}}, \\\\\\\\ \\\\Delta^{i}u(-(n-1))=\\\\Delta^{i}u(N-(n-1)),\\\\quad & i\\\\in[0, 2n-1]_{\\\\mathbb{Z}},\\\\end{cases}\\\\] where \\\\(\\\\lambda\\\\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \\\\(2n\\\\)-th order problems by applying the variational methods and critical point theory.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2021.41.4.489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2021.41.4.489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
Let \(n\in\mathbb{N}^{*}\), and \(N\geq n\) be an integer. We study the spectrum of discrete linear \(2n\)-th order eigenvalue problems \[\begin{cases}\sum_{k=0}^{n}(-1)^{k}\Delta^{2k}u(t-k) = \lambda u(t) ,\quad & t\in[1, N]_{\mathbb{Z}}, \\ \Delta^{i}u(-(n-1))=\Delta^{i}u(N-(n-1)),\quad & i\in[0, 2n-1]_{\mathbb{Z}},\end{cases}\] where \(\lambda\) is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear \(2n\)-th order problems by applying the variational methods and critical point theory.