社论:网络数据科学进展

Yuguo Chen, Daniel Sewell, Panpan Zhang, Xuening Zhu
{"title":"社论:网络数据科学进展","authors":"Yuguo Chen, Daniel Sewell, Panpan Zhang, Xuening Zhu","doi":"10.6339/23-jds213edi","DOIUrl":null,"url":null,"abstract":"This special issue features nine articles on “Advances in Network Data Science”. Data science is an interdisciplinary research field utilizing scientific methods to facilitate knowledge and insights from structured and unstructured data across a broad range of domains. Network data are proliferating in many fields, and network data analysis has become a burgeoning research in the data science community. Due to the nature of heterogeneity and complexity of network data, classical statistical approaches for network model fitting face a great deal of challenges, especially for large-scale network data. Therefore, it becomes crucial to develop advanced methodological and computational tools to cope with challenges associated with massive and complex network data analyses. This special issue highlights some recent studies in the area of network data analysis, showcasing a variety of contributions in statistical methodology, two real-world applications, a software package for network generation, and a survey on handling missing values in networks. Five articles are published in the Statistical Data Science Section. Wang and Resnick (2023) employed point processes to investigate the macroscopic growth dynamics of geographically concentrated regional networks. They discovered that during the startup phase, a self-exciting point process effectively modeled the growth process, and subsequently, the growth of links could be suitably described by a non-homogeneous Poisson process. Komolafe","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Editorial: Advances in Network Data Science\",\"authors\":\"Yuguo Chen, Daniel Sewell, Panpan Zhang, Xuening Zhu\",\"doi\":\"10.6339/23-jds213edi\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This special issue features nine articles on “Advances in Network Data Science”. Data science is an interdisciplinary research field utilizing scientific methods to facilitate knowledge and insights from structured and unstructured data across a broad range of domains. Network data are proliferating in many fields, and network data analysis has become a burgeoning research in the data science community. Due to the nature of heterogeneity and complexity of network data, classical statistical approaches for network model fitting face a great deal of challenges, especially for large-scale network data. Therefore, it becomes crucial to develop advanced methodological and computational tools to cope with challenges associated with massive and complex network data analyses. This special issue highlights some recent studies in the area of network data analysis, showcasing a variety of contributions in statistical methodology, two real-world applications, a software package for network generation, and a survey on handling missing values in networks. Five articles are published in the Statistical Data Science Section. Wang and Resnick (2023) employed point processes to investigate the macroscopic growth dynamics of geographically concentrated regional networks. They discovered that during the startup phase, a self-exciting point process effectively modeled the growth process, and subsequently, the growth of links could be suitably described by a non-homogeneous Poisson process. Komolafe\",\"PeriodicalId\":73699,\"journal\":{\"name\":\"Journal of data science : JDS\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science : JDS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6339/23-jds213edi\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/23-jds213edi","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本期特刊收录了九篇关于“网络数据科学进展”的文章。数据科学是一个跨学科的研究领域,利用科学的方法从广泛的领域中结构化和非结构化数据中获取知识和见解。网络数据在许多领域激增,网络数据分析已成为数据科学界的一项新兴研究。由于网络数据的异质性和复杂性,传统的网络模型拟合的统计方法面临着很大的挑战,特别是对于大规模的网络数据。因此,开发先进的方法和计算工具来应对与大量复杂网络数据分析相关的挑战变得至关重要。本期特刊重点介绍了网络数据分析领域的一些最新研究,展示了统计方法的各种贡献,两个现实世界的应用,一个网络生成软件包,以及对处理网络中缺失值的调查。在统计数据科学部分发表了五篇文章。Wang和Resnick(2023)采用点过程研究地理集中区域网络的宏观增长动态。他们发现,在启动阶段,一个自激点过程有效地模拟了生长过程,随后,链接的生长可以用非齐次泊松过程来适当地描述。Komolafe
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Editorial: Advances in Network Data Science
This special issue features nine articles on “Advances in Network Data Science”. Data science is an interdisciplinary research field utilizing scientific methods to facilitate knowledge and insights from structured and unstructured data across a broad range of domains. Network data are proliferating in many fields, and network data analysis has become a burgeoning research in the data science community. Due to the nature of heterogeneity and complexity of network data, classical statistical approaches for network model fitting face a great deal of challenges, especially for large-scale network data. Therefore, it becomes crucial to develop advanced methodological and computational tools to cope with challenges associated with massive and complex network data analyses. This special issue highlights some recent studies in the area of network data analysis, showcasing a variety of contributions in statistical methodology, two real-world applications, a software package for network generation, and a survey on handling missing values in networks. Five articles are published in the Statistical Data Science Section. Wang and Resnick (2023) employed point processes to investigate the macroscopic growth dynamics of geographically concentrated regional networks. They discovered that during the startup phase, a self-exciting point process effectively modeled the growth process, and subsequently, the growth of links could be suitably described by a non-homogeneous Poisson process. Komolafe
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信