基于随机投影的高效贝叶斯高维分类及其在基因表达数据中的应用

Abhisek Chakraborty
{"title":"基于随机投影的高效贝叶斯高维分类及其在基因表达数据中的应用","authors":"Abhisek Chakraborty","doi":"10.6339/23-jds1102","DOIUrl":null,"url":null,"abstract":"Inspired by the impressive successes of compress sensing-based machine learning algorithms, data augmentation-based efficient Gibbs samplers for Bayesian high-dimensional classification models are developed by compressing the design matrix to a much lower dimension. Ardent care is exercised in the choice of the projection mechanism, and an adaptive voting rule is employed to reduce sensitivity to the random projection matrix. Focusing on the high-dimensional Probit regression model, we note that the naive implementation of the data augmentation-based Gibbs sampler is not robust to the presence of co-linearity in the design matrix – a setup ubiquitous in $n<p$ problems. We demonstrate that a simple fix based on joint updates of parameters in the latent space circumnavigates this issue. With a computationally efficient MCMC scheme in place, we introduce an ensemble classifier by creating R (∼25–50) projected copies of the design matrix, and subsequently running R classification models with the R projected design matrix in parallel. We combine the output from the R replications via an adaptive voting scheme. Our scheme is inherently parallelizable and capable of taking advantage of modern computing environments often equipped with multiple cores. The empirical success of our methodology is illustrated in elaborate simulations and gene expression data applications. We also extend our methodology to a high-dimensional logistic regression model and carry out numerical studies to showcase its efficacy.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Bayesian High-Dimensional Classification via Random Projection with Application to Gene Expression Data\",\"authors\":\"Abhisek Chakraborty\",\"doi\":\"10.6339/23-jds1102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the impressive successes of compress sensing-based machine learning algorithms, data augmentation-based efficient Gibbs samplers for Bayesian high-dimensional classification models are developed by compressing the design matrix to a much lower dimension. Ardent care is exercised in the choice of the projection mechanism, and an adaptive voting rule is employed to reduce sensitivity to the random projection matrix. Focusing on the high-dimensional Probit regression model, we note that the naive implementation of the data augmentation-based Gibbs sampler is not robust to the presence of co-linearity in the design matrix – a setup ubiquitous in $n<p$ problems. We demonstrate that a simple fix based on joint updates of parameters in the latent space circumnavigates this issue. With a computationally efficient MCMC scheme in place, we introduce an ensemble classifier by creating R (∼25–50) projected copies of the design matrix, and subsequently running R classification models with the R projected design matrix in parallel. We combine the output from the R replications via an adaptive voting scheme. Our scheme is inherently parallelizable and capable of taking advantage of modern computing environments often equipped with multiple cores. The empirical success of our methodology is illustrated in elaborate simulations and gene expression data applications. We also extend our methodology to a high-dimensional logistic regression model and carry out numerical studies to showcase its efficacy.\",\"PeriodicalId\":73699,\"journal\":{\"name\":\"Journal of data science : JDS\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science : JDS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6339/23-jds1102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/23-jds1102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受基于压缩感知的机器学习算法令人印象深刻的成功启发,基于数据增强的高效吉布斯采样器通过将设计矩阵压缩到更低的维度来开发贝叶斯高维分类模型。在投影机制的选择上特别注意,并采用自适应投票规则来降低对随机投影矩阵的敏感性。专注于高维Probit回归模型,我们注意到基于数据增强的Gibbs采样器的天真实现对设计矩阵中共线性的存在不具有鲁棒性-这是在$n本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Efficient Bayesian High-Dimensional Classification via Random Projection with Application to Gene Expression Data
Inspired by the impressive successes of compress sensing-based machine learning algorithms, data augmentation-based efficient Gibbs samplers for Bayesian high-dimensional classification models are developed by compressing the design matrix to a much lower dimension. Ardent care is exercised in the choice of the projection mechanism, and an adaptive voting rule is employed to reduce sensitivity to the random projection matrix. Focusing on the high-dimensional Probit regression model, we note that the naive implementation of the data augmentation-based Gibbs sampler is not robust to the presence of co-linearity in the design matrix – a setup ubiquitous in $n
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信