计算指数族随机图模型的伪似然估计量

Christian S. Schmid, David R. Hunter
{"title":"计算指数族随机图模型的伪似然估计量","authors":"Christian S. Schmid, David R. Hunter","doi":"10.6339/23-jds1094","DOIUrl":null,"url":null,"abstract":"The reputation of the maximum pseudolikelihood estimator (MPLE) for Exponential Random Graph Models (ERGM) has undergone a drastic change over the past 30 years. While first receiving broad support, mainly due to its computational feasibility and the lack of alternatives, general opinions started to change with the introduction of approximate maximum likelihood estimator (MLE) methods that became practicable due to increasing computing power and the introduction of MCMC methods. Previous comparison studies appear to yield contradicting results regarding the preference of these two point estimators; however, there is consensus that the prevailing method to obtain an MPLE’s standard error by the inverse Hessian matrix generally underestimates standard errors. We propose replacing the inverse Hessian matrix by an approximation of the Godambe matrix that results in confidence intervals with appropriate coverage rates and that, in addition, enables examining for model degeneracy. Our results also provide empirical evidence for the asymptotic normality of the MPLE under certain conditions.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computing Pseudolikelihood Estimators for Exponential-Family Random Graph Models\",\"authors\":\"Christian S. Schmid, David R. Hunter\",\"doi\":\"10.6339/23-jds1094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reputation of the maximum pseudolikelihood estimator (MPLE) for Exponential Random Graph Models (ERGM) has undergone a drastic change over the past 30 years. While first receiving broad support, mainly due to its computational feasibility and the lack of alternatives, general opinions started to change with the introduction of approximate maximum likelihood estimator (MLE) methods that became practicable due to increasing computing power and the introduction of MCMC methods. Previous comparison studies appear to yield contradicting results regarding the preference of these two point estimators; however, there is consensus that the prevailing method to obtain an MPLE’s standard error by the inverse Hessian matrix generally underestimates standard errors. We propose replacing the inverse Hessian matrix by an approximation of the Godambe matrix that results in confidence intervals with appropriate coverage rates and that, in addition, enables examining for model degeneracy. Our results also provide empirical evidence for the asymptotic normality of the MPLE under certain conditions.\",\"PeriodicalId\":73699,\"journal\":{\"name\":\"Journal of data science : JDS\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science : JDS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6339/23-jds1094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/23-jds1094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去的30年里,指数随机图模型(ERGM)的最大伪似然估计量(MPLE)的名声发生了巨大的变化。虽然最初得到广泛支持,主要是由于其计算可行性和缺乏替代方案,但随着近似最大似然估计(MLE)方法的引入,由于计算能力的提高和MCMC方法的引入,这种方法变得可行,普遍的观点开始改变。先前的比较研究似乎产生矛盾的结果关于这两个点估计的偏好;然而,人们一致认为,通过逆Hessian矩阵获得MPLE标准误差的主流方法通常会低估标准误差。我们建议用Godambe矩阵的近似值替换逆Hessian矩阵,从而产生具有适当覆盖率的置信区间,此外,还可以检查模型退化。我们的结果也为MPLE在一定条件下的渐近正态性提供了经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Pseudolikelihood Estimators for Exponential-Family Random Graph Models
The reputation of the maximum pseudolikelihood estimator (MPLE) for Exponential Random Graph Models (ERGM) has undergone a drastic change over the past 30 years. While first receiving broad support, mainly due to its computational feasibility and the lack of alternatives, general opinions started to change with the introduction of approximate maximum likelihood estimator (MLE) methods that became practicable due to increasing computing power and the introduction of MCMC methods. Previous comparison studies appear to yield contradicting results regarding the preference of these two point estimators; however, there is consensus that the prevailing method to obtain an MPLE’s standard error by the inverse Hessian matrix generally underestimates standard errors. We propose replacing the inverse Hessian matrix by an approximation of the Godambe matrix that results in confidence intervals with appropriate coverage rates and that, in addition, enables examining for model degeneracy. Our results also provide empirical evidence for the asymptotic normality of the MPLE under certain conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信