t和相关copula的计算挑战

Erik Hintz, M. Hofert, C. Lemieux
{"title":"t和相关copula的计算挑战","authors":"Erik Hintz, M. Hofert, C. Lemieux","doi":"10.6339/22-jds1034","DOIUrl":null,"url":null,"abstract":"The present paper addresses computational and numerical challenges when working with t copulas and their more complicated extensions, the grouped t and skew t copulas. We demonstrate how the R package nvmix can be used to work with these copulas. In particular, we discuss (quasi-)random sampling and fitting. We highlight the difficulties arising from using more complicated models, such as the lack of availability of a joint density function or the lack of an analytical form of the marginal quantile functions, and give possible solutions along with future research ideas.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Challenges of t and Related Copulas\",\"authors\":\"Erik Hintz, M. Hofert, C. Lemieux\",\"doi\":\"10.6339/22-jds1034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper addresses computational and numerical challenges when working with t copulas and their more complicated extensions, the grouped t and skew t copulas. We demonstrate how the R package nvmix can be used to work with these copulas. In particular, we discuss (quasi-)random sampling and fitting. We highlight the difficulties arising from using more complicated models, such as the lack of availability of a joint density function or the lack of an analytical form of the marginal quantile functions, and give possible solutions along with future research ideas.\",\"PeriodicalId\":73699,\"journal\":{\"name\":\"Journal of data science : JDS\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science : JDS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6339/22-jds1034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/22-jds1034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文解决了计算和数值上的挑战,当处理t轴及其更复杂的扩展,分组t轴和倾斜t轴时。我们将演示如何使用R包nvmix来处理这些copula。特别地,我们讨论了(拟)随机抽样和拟合。我们强调了使用更复杂的模型所产生的困难,例如缺乏联合密度函数的可用性或缺乏边际分位数函数的分析形式,并给出了可能的解决方案以及未来的研究思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Challenges of t and Related Copulas
The present paper addresses computational and numerical challenges when working with t copulas and their more complicated extensions, the grouped t and skew t copulas. We demonstrate how the R package nvmix can be used to work with these copulas. In particular, we discuss (quasi-)random sampling and fitting. We highlight the difficulties arising from using more complicated models, such as the lack of availability of a joint density function or the lack of an analytical form of the marginal quantile functions, and give possible solutions along with future research ideas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信